Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A universal Ebola drug target

08.10.2014

New study reports design, characterization of universally conserved drug target for current, future strains of virus

University of Utah biochemists have reported a new drug discovery tool against the Ebola virus. According to a study published in this week's online edition of Protein Science, they have produced a molecule, known as a peptide mimic, that displays a functionally critical region of the virus that is universally conserved in all known species of Ebola. This new tool can be used as a drug target in the discovery of anti-Ebola agents that are effective against all known strains and likely future strains.

The University of Utah (U of U) work, which was funded by the National Institutes of Health, was conducted by a large collaborative team led by Debra Eckert, Ph.D., (research assistant professor of biochemistry) and Michael Kay, M.D., Ph.D., (professor of biochemistry).

Key contributions to this work were provided by Dr. John Dye's laboratory at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), the lab of Christopher P. Hill, D.Phil., professor and co-chair of the U of U Department of Biochemistry, and a group led by Brett Welch, Ph.D. at Navigen, Inc., a Salt Lake City pharmaceutical discovery and development company. (Navigen has licensed exclusive rights to the technology from the U of U and is currently screening for drugs against the target.)

The Utah scientists designed peptide mimics of a highly conserved region in the Ebola protein that controls entry of the virus into the human host cell, initiating infection. Importantly, the researchers were able to demonstrate this peptide target is suitable for use in high-throughput drug screens. These kinds of screens allow rapid identification of potential new drugs from billions of possible candidates.

Current experimental drugs generally target only one of Ebola's five species. "The current growing epidemic demonstrates the need for effective broad-range Ebola virus therapies," says Dr. Tracy R. Clinton, lead author on the study. "Importantly, viral sequence information from the epidemic reveals rapid changes in the viral genome, while our target sequence remains the same. Therefore, our target will enable the discovery of drugs with the potential to treat any future epidemic, even if new Ebola virus strains emerge."

Ebola is a lethal virus that causes severe hemorrhagic fever with a 50 percent to 90 percent mortality rate. There are five known species of the virus. Outbreaks have been occurring with increasing frequency in recent years, and an unprecedented and rapidly expanding Ebola outbreak is currently spreading through several countries in West Africa with devastating consequences.

The development of an effective anti-Ebola agent to protect against natural outbreaks and potential bioterror exposures is an urgent global health need. There are no approved anti-Ebola agents, but a number of promising experimental drugs are being aggressively advanced to clinical trials to address the current crisis.

Dr. Eckert notes, "Although the current push of clinical trials will hopefully lead to an effective treatment for the Zaire species causing the present epidemic, the same treatments are unlikely to be effective against future outbreaks of a different or new Ebola species. Development of a broadly acting therapy is an important long-term goal that would allow cost-effective stockpiling of a universal Ebola treatment."

Of particular interest, this target was shown to be suitable for the discovery of mirror-image peptide inhibitors (D-peptides), which are promising drug candidates. Unlike natural peptides, they are not digested by enzymes in the blood. D-peptides are also much simpler and less expensive to produce compared to the current most promising approach, antibodies.

The Utah group has previously developed highly potent and broadly acting D-peptide inhibitors of HIV entry, currently in preclinical studies, and is now adapting this approach to Ebola using the mimics developed in this study. In collaboration with Navigen, several promising lead D-peptide inhibitors have already been identified. U of U and Navigen are now seeking additional funding to optimize these inhibitors and advance them into clinical trials in humans.

Phil Sahm | Eurek Alert!
Further information:
http://healthcare.utah.edu/publicaffairs/

Further reports about: Ebola Ebola virus Health Health Sciences clinical trials developed epidemic experimental sequence strains

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>