Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A unique on-off switch for hormone production

23.02.2012
After we sense a threat, our brain center responsible for responding goes into gear, setting off a chain of biochemical reactions leading to the release of cortisol from the adrenal glands.

Dr. Gil Levkowitz and his team in the Molecular Cell Biology Department have now revealed a new kind of ON-OFF switch in the brain for regulating the production of a main biochemical signal from the brain that stimulates cortisol release in the body. This finding, which was recently published in Neuron, may be relevant to research into a number of stress-related neurological disorders.

This signal is corticotropin releasing hormone (CRH). CRH is manufactured and stored in special neurons in the hypothalamus. Within this small brain region the danger is sensed, the information processed and the orders to go into stress-response mode are sent out. As soon as the CRH-containing neurons have depleted their supply of the hormone, they are already receiving the directive to produce more.

The research – on zebrafish – was performed in Levkowitz's lab and spearheaded by Dr. Liat Amir- Zilberstein together with Drs. Janna Blechman, Adriana Reuveny and Natalia Borodovsky, and Maayan Tahor. The team found that a protein called Otp is involved in several stages of CRH production. As well as directly activating the genes encoding CRH, it also regulates the production of two different receptors on the neurons' surface for receiving and relaying CRH production signals – in effect, ON and OFF switches.

The team found that both receptors are encoded in a single gene. To get two receptors for the price of one, Otp regulates a gene-editing process known as alternative splicing, in which some of the elements in the sequence encoded in a gene can be "cut and pasted" to make slightly different "sentences." In this case, it generates two variants of a receptor called PAC1: The short version produces the ON receptor; the long version, containing an extra sequence, encodes the OFF receptor. The researchers found that as the threat passed and the supply of CRH was replenished, the ratio between the two types of PAC1 receptor on the neurons' surface gradually changed from more ON to mostly OFF. In collaboration with Drs Laure Bally-Cuif and William Norton of the Institute of Neurobiology Alfred Fessard at the Centre National de la Recherche Scientifique (CNRS) in France, the researchers showed that blocking the production of the long receptor variant causes an anxiety like behavior in zebrafish.

Together with Drs. Alon Chen and Yehezkel Sztainberg of the Neurobiology Department, Levkowitz's team found the same alternatively-spliced switch in mice. This conservation of the mechanism through the evolution of fish and mice implies that a similar means of turning CRH production on and off exists in the human brain.

Faulty switching mechanisms may play a role in a number of stress-related disorders. The action of the PAC1 receptor has recently been implicated in post-traumatic stress disorder, as well as in schizophrenia and depression. Malfunctions in alternative splicing have also been associated with epilepsy, mental retardation, bipolar disorder and autism.

Dr. Gil Levkowitz's research is supported by the estate of Lore Lennon; the Kirk Center for Childhood Cancer and Immunological Disorders; and the Irwin Green Alzheimer's Research Fund. Dr. Levkowitz is the incumbent of the Tauro Career Development Chair in Biomedical Research.

Dr. Alon Chen's research is supported by the Nella and Leon Benoziyo Center for Neurosciences; the Nella and Leon Benoziyo Center for Neurological Diseases; the European Research Council; Roberto and Renata Ruhman, Brazil; Martine Turcotte and Friends, Canada; Mark Besen and the Pratt Foundation, Australia; the estate of Nathan Baltor; the estate of Lola Asseof; and the Women's Health Research Center funded by the Bennett-Pritzker Endowment Fund, the Marvelle Koffler Program for Breast Cancer Research, the Harry and Jeanette Weinberg Women's Health Research Endowment and the Oprah Winfrey Biomedical Research Fund. Dr. Chen is the incumbent of the Philip Harris and Gerald Ronson Career Development Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>