Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A unique on-off switch for hormone production

23.02.2012
After we sense a threat, our brain center responsible for responding goes into gear, setting off a chain of biochemical reactions leading to the release of cortisol from the adrenal glands.

Dr. Gil Levkowitz and his team in the Molecular Cell Biology Department have now revealed a new kind of ON-OFF switch in the brain for regulating the production of a main biochemical signal from the brain that stimulates cortisol release in the body. This finding, which was recently published in Neuron, may be relevant to research into a number of stress-related neurological disorders.

This signal is corticotropin releasing hormone (CRH). CRH is manufactured and stored in special neurons in the hypothalamus. Within this small brain region the danger is sensed, the information processed and the orders to go into stress-response mode are sent out. As soon as the CRH-containing neurons have depleted their supply of the hormone, they are already receiving the directive to produce more.

The research – on zebrafish – was performed in Levkowitz's lab and spearheaded by Dr. Liat Amir- Zilberstein together with Drs. Janna Blechman, Adriana Reuveny and Natalia Borodovsky, and Maayan Tahor. The team found that a protein called Otp is involved in several stages of CRH production. As well as directly activating the genes encoding CRH, it also regulates the production of two different receptors on the neurons' surface for receiving and relaying CRH production signals – in effect, ON and OFF switches.

The team found that both receptors are encoded in a single gene. To get two receptors for the price of one, Otp regulates a gene-editing process known as alternative splicing, in which some of the elements in the sequence encoded in a gene can be "cut and pasted" to make slightly different "sentences." In this case, it generates two variants of a receptor called PAC1: The short version produces the ON receptor; the long version, containing an extra sequence, encodes the OFF receptor. The researchers found that as the threat passed and the supply of CRH was replenished, the ratio between the two types of PAC1 receptor on the neurons' surface gradually changed from more ON to mostly OFF. In collaboration with Drs Laure Bally-Cuif and William Norton of the Institute of Neurobiology Alfred Fessard at the Centre National de la Recherche Scientifique (CNRS) in France, the researchers showed that blocking the production of the long receptor variant causes an anxiety like behavior in zebrafish.

Together with Drs. Alon Chen and Yehezkel Sztainberg of the Neurobiology Department, Levkowitz's team found the same alternatively-spliced switch in mice. This conservation of the mechanism through the evolution of fish and mice implies that a similar means of turning CRH production on and off exists in the human brain.

Faulty switching mechanisms may play a role in a number of stress-related disorders. The action of the PAC1 receptor has recently been implicated in post-traumatic stress disorder, as well as in schizophrenia and depression. Malfunctions in alternative splicing have also been associated with epilepsy, mental retardation, bipolar disorder and autism.

Dr. Gil Levkowitz's research is supported by the estate of Lore Lennon; the Kirk Center for Childhood Cancer and Immunological Disorders; and the Irwin Green Alzheimer's Research Fund. Dr. Levkowitz is the incumbent of the Tauro Career Development Chair in Biomedical Research.

Dr. Alon Chen's research is supported by the Nella and Leon Benoziyo Center for Neurosciences; the Nella and Leon Benoziyo Center for Neurological Diseases; the European Research Council; Roberto and Renata Ruhman, Brazil; Martine Turcotte and Friends, Canada; Mark Besen and the Pratt Foundation, Australia; the estate of Nathan Baltor; the estate of Lola Asseof; and the Women's Health Research Center funded by the Bennett-Pritzker Endowment Fund, the Marvelle Koffler Program for Breast Cancer Research, the Harry and Jeanette Weinberg Women's Health Research Endowment and the Oprah Winfrey Biomedical Research Fund. Dr. Chen is the incumbent of the Philip Harris and Gerald Ronson Career Development Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Life Sciences:

nachricht Cloud Formation: How Feldspar Acts as Ice Nucleus
09.12.2016 | Karlsruher Institut für Technologie

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>