Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A timid knockout mouse separates conflicting emotional behavior for the first time

13.07.2009
A RIKEN-led group has developed a novel mouse strain that opens a door to future research into emotion.

Animal behavior is typically the outcome of conflicting emotions. The novel mouse shows abnormal approach, but not avoidance, behavior. So researchers can use it to dissect how emotions make us decide to approach or avoid, which may provide a key to understanding shyness.

Group leader Shigeyoshi Itohara and colleagues at the RIKEN Brain Science Institute in Wako and at Hokkaido University genetically engineered a mouse strain in which the X11L gene was purposefully deleted or ‘knocked out’. The researchers recently published a detailed analysis of the mutant mice in The Journal of Neuroscience (1).

X11L is a protein known to modulate neural activity in the brain. It also suppresses synthesis of the fibrous protein amyloid â, thought to cause Alzheimer’s disease. The X11L knockout (X11L-KO) mouse was originally developed in the hope of producing a model for Alzheimer’s disease, but it exhibited normal memory functions and learning capabilities.

The researchers did notice something unusual, however. The X11L-KO mice were subordinate to normal mice under conditions when the two needed to compete for food (Fig. 1). Mutant mice always lost weight compared to normal mice, yet displayed no loss of appetite or physical weakness.

The researchers then ran a series of experiments to identify the origin of this subordinate behavior. When placed in situations used to examine anxiety—in open fields or on elevated mazes, for instance—the X11L-KO mice responded normally. Itohara and colleagues found that resident X11L-KO mice were less likely to approach intruders, and demonstrated a decreased tendency to dig and burrow, and to bury marbles. These tests indicated the subordinate behavior of X11L-KO mice was due to a deficit in motivated approach behavior, not heightened anxiety or depressive characteristics—both of which are thought to be associated with avoidance behavior.

Chemically, X11L-KO mice displayed an imbalance of monoamine nerve modulation compounds in the forebrain. The abnormal responses could be reversed by the addition of active X11L genes to X11L-KO mice during development.

“These findings suggest that X11L is involved in the development of the neural circuits that contribute to conflict resolution,” says Itohara. “This mouse will provide us with opportunities to understand the mechanisms underlying approach behavior, and how to moderate it. With sufficient knowledge, we may be able to selectively modulate behavior, and possibly help overcome shyness in people.”

Reference

1. Sano, Y., Ornthanalai, V.G., Yamada, K., Homma, C., Suzuki, H., Suzuki, T., Murphy, N.P. & Itohara, S. X11-like protein deficiency is associated with impaired conflict resolution in mice. The Journal of Neuroscience 29, 5884–5896 (2009).

The corresponding author for this highlight is based at the RIKEN Laboratory for Behavioral Genetics

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/741/
http://www.researchsea.com

Further reports about: Alzheimer Neuroscience RIKEN X11L X11L gene X11L-KO X11L-KO mice novel mouse strain

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>