Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A timid knockout mouse separates conflicting emotional behavior for the first time

13.07.2009
A RIKEN-led group has developed a novel mouse strain that opens a door to future research into emotion.

Animal behavior is typically the outcome of conflicting emotions. The novel mouse shows abnormal approach, but not avoidance, behavior. So researchers can use it to dissect how emotions make us decide to approach or avoid, which may provide a key to understanding shyness.

Group leader Shigeyoshi Itohara and colleagues at the RIKEN Brain Science Institute in Wako and at Hokkaido University genetically engineered a mouse strain in which the X11L gene was purposefully deleted or ‘knocked out’. The researchers recently published a detailed analysis of the mutant mice in The Journal of Neuroscience (1).

X11L is a protein known to modulate neural activity in the brain. It also suppresses synthesis of the fibrous protein amyloid â, thought to cause Alzheimer’s disease. The X11L knockout (X11L-KO) mouse was originally developed in the hope of producing a model for Alzheimer’s disease, but it exhibited normal memory functions and learning capabilities.

The researchers did notice something unusual, however. The X11L-KO mice were subordinate to normal mice under conditions when the two needed to compete for food (Fig. 1). Mutant mice always lost weight compared to normal mice, yet displayed no loss of appetite or physical weakness.

The researchers then ran a series of experiments to identify the origin of this subordinate behavior. When placed in situations used to examine anxiety—in open fields or on elevated mazes, for instance—the X11L-KO mice responded normally. Itohara and colleagues found that resident X11L-KO mice were less likely to approach intruders, and demonstrated a decreased tendency to dig and burrow, and to bury marbles. These tests indicated the subordinate behavior of X11L-KO mice was due to a deficit in motivated approach behavior, not heightened anxiety or depressive characteristics—both of which are thought to be associated with avoidance behavior.

Chemically, X11L-KO mice displayed an imbalance of monoamine nerve modulation compounds in the forebrain. The abnormal responses could be reversed by the addition of active X11L genes to X11L-KO mice during development.

“These findings suggest that X11L is involved in the development of the neural circuits that contribute to conflict resolution,” says Itohara. “This mouse will provide us with opportunities to understand the mechanisms underlying approach behavior, and how to moderate it. With sufficient knowledge, we may be able to selectively modulate behavior, and possibly help overcome shyness in people.”

Reference

1. Sano, Y., Ornthanalai, V.G., Yamada, K., Homma, C., Suzuki, H., Suzuki, T., Murphy, N.P. & Itohara, S. X11-like protein deficiency is associated with impaired conflict resolution in mice. The Journal of Neuroscience 29, 5884–5896 (2009).

The corresponding author for this highlight is based at the RIKEN Laboratory for Behavioral Genetics

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/741/
http://www.researchsea.com

Further reports about: Alzheimer Neuroscience RIKEN X11L X11L gene X11L-KO X11L-KO mice novel mouse strain

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>