Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a stuck accelerator causes cancer cell expansion

26.09.2008
Oncogene indirectly sensitizes colorectal cancer to chemotherapy
PNAS: What allows cancer cells to divide uncontrolled?

The cellular oncogenes and tumor suppressor genes are analogous to the accelerator and brake pedals in a car. If an oncogene is permanently active, similar to a stuck accelerator in a car, cells divide without restraints and a tumor develops.

The c-MYC proto-oncogene is activated aberrantly in about 50% of all tumors. As a result the c-MYC protein is produced in excessive amounts, which in turn activates processes associated with cell proliferation. A group of research scientists led by Prof. Heiko Hermeking (Institute of Pathology, Ruhr-University Bochum, Germany) has now identified a mechanism that allows c-MYC to drive cellular proliferation in the presence of substances that would lead to a block in cell division in normal cells, as for example chemotherapeutic agents.

“In future this knowledge may allow a more specific inhibition of tumor growth” Hermeking hopes. This study has been published in the current edition of the Proceedings of the National Academy of Sciences USA (PNAS).

Attractive target structure for cancer drugs

The c-MYC gene is a nodal point in the regulation of cellular division and is highly expressed in colorectal cancer and many other tumor types. The c-MYC protein is a transcription factor which regulates other genes, which in turn mediate the effects of c-MYC on cell proliferation. “In order to understand the origin of cancer it is therefore important to identify genes and mechanisms that mediate the effects of c-MYC on cells” Prof. Hermeking explained. Because of its central position in the regulation of cell proliferation c-MYC is an attractive target structure for cancer therapeutic agents.

Signaling chain unraveled in detail

Prof. Hermeking’s research team determined how c-MYC promotes proliferation. They were able to demonstrate that c-MYC activates the AP4 gene, which results in the synthesis of AP4 protein. AP4 protein in turn suppresses the formation of a central inhibitor of cellular division (p21) by occupying its regulatory region within the genome. Thereby tumor cells become refractory to substances, e.g. chemotherapeutic agents, which block cell division in normal cells.

Instead of terminating proliferation the tumor cells undergo cell death. Moreover, the scientists discovered that colorectal carcinomas, in contrast to normal colon tissue, generally produce large amounts of the AP4 protein. In the future, the knowledge about this signaling cascade could enable a more targeted prevention of cancer cell proliferation. The project is supported by the German Cancer Aid (Deutsche Krebshilfe e.V.).

Prof. Dr. Heiko Hermeking | alfa
Further information:
http://www.rub.de

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>