Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A strategy to fix a broken heart

These days people usually don't die from a heart attack. But the damage to heart muscle is irreversible, and most patients eventually succumb to congestive heart failure, the most common cause of death in developed countries.

Stem cells now offer hope for achieving what the body can't do: mending broken hearts. Engineers and physicians at the University of Washington have built a scaffold that supports the growth and integration of stem cell-derived cardiac muscle cells. A description of the scaffold, which supports the growth of cardiac cells in the lab and encourages blood vessel growth in living animals, is published this week in the Proceedings of the National Academy of Sciences.

"Today, if you have a heart attack there's nothing that doctors can do to repair the damage," said lead author Buddy Ratner, a UW professor of bioengineering. "You are, in essence, sentenced to a downhill slide, developing congestive heart failure that greatly shortens your lifespan."

"Your body can't make new heart cells, but what if we can deliver vital new cells in that damaged portion of the heart?"

Ratner and his colleagues built a tiny tubular porous scaffold that supports and stabilizes the fragile cardiac cells and can be injected into a damaged heart, where it will foster cell growth and eventually dissolve away. The new scaffold not only supports cardiac muscle growth, but potentially accelerates the body's ability to supply oxygen and nutrients to the transplanted tissue. Eventually, the idea is that doctors would seed the scaffold with stem cells from either the patient or a donor, then implant it when the patient is treated for a heart attack, before scar tissue has formed.

Other heart scaffolds or tissue patches currently being developed combine cardiac muscle cells and two other types of cells needed to kick-start the growth of blood vessels and connective tissue. Preparing each type of cells is an enormous amount of work, so a scaffold that requires just one type of cell, like this one, would be significantly cheaper and easier to use.

Ratner's scaffold is a flexible polymer with interconnected pores all of the same size. This one also includes channels to accommodate cardiac cells' preference for fusing together in long chains. Researchers first verified the design using chicken embryonic heart cells, and confirmed that the scaffold could support heart tissue growth at concentrations similar to those in living heart tissue.

They then seeded the scaffold with cardiac muscle cells derived from human embryonic stem cells. These cells survived and collected in the channels. Over five days, the cardiac muscle cells multiplied faster in the scaffold environment than other cell types, and could survive up to 300 micrometers (about the diameter of four human hairs) from the scaffold edge -- an important point if the scaffold is to integrate with the body.

The cells expressed two proteins associated with muscle contraction and could contract with sufficient force to deform the scaffold.

Researchers also implanted a bare scaffold into a living rat's heart to verify the scaffold's biocompatibility. Results showed that after four weeks the heart had accepted the foreign body, and new blood vessels had penetrated into the scaffold.

Why blood vessels penetrate so well is unknown. One hypothesis involves the macrophage, a cell in the immune system, and the size of the pores, which seems to be critical. The macrophages first attack the foreign body as an invader and try to digest it. They enter the pores and are themselves entrapped. At this point the macrophage seems to switch from its attack mode to its healing mode. The team is now investigating the blood vessel formation.

Heart tissues need a rich blood supply, and that's been one of the limiting factors to heart repair and vascular tissue engineering, said co-author Chuck Murry, professor of pathology and bioengineering.

"The first thing that transplanted heart cells have to do is survive. And when you transition them from a culture dish to the body, initially they don't have a blood supply. So we have to promote the host blood supply as fast as possible," Murry said.

"We're very optimistic that this scaffold will help keep the muscle cells alive after implantation and will help transition them to working heart muscles," Murry said.

The scaffold is made from a jelly-like hydrogel material developed by first author, UW bioengineering doctoral student Lauran Madden. A needle is used to implant the tiny (third of a millimeter wide by 4 millimeters long) scaffold rods into the heart muscle. But the scaffold can support growth of larger clumps of heart tissue, Madden said.

The next steps will involve adjusting the scaffold degradation time so that the scaffold degrades at the same rate that cardiac cells proliferate and that blood vessels and support fibers grow in, and then implant a cell-laden scaffold into a damaged heart.

"What we have now is a really good system going in the dish, and we're working to transition it to in the body," Madden said.

Beat BioTherapeutics, a Seattle startup co-founded by Ratner, Murry and co-author Michael Laflamme, a UW assistant professor of pathology, plans to license the technology to help bring it to patients.

Co-authors are Eric Sussman, Janet Cuy and Kip Hauch in UW bioengineering, Sarah Dupras and James Fugate in UW pathology, and Derek Mortisen, a UW chemical engineering graduate.

For more information, contact Ratner at 206-685-1005 or and Murry at 206-616-8685 or

Talk by Charles Murry on ResearchChannel:

Talk by Buddy Ratner on UWTV:

The article is available at

Hannah Hickey | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>