Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Shot To The Heart: Nanoneedle Delivers Quantum Dots to Cell Nucleus

28.09.2010
Getting an inside look at the center of a cell can be as easy as a needle prick, thanks to University of Illinois researchers who have developed a tiny needle to deliver a shot right to a cell’s nucleus.

Understanding the processes inside the nucleus of a cell, which houses DNA and is the site for transcribing genes, could lead to greater comprehension of genetics and the factors that regulate expression. Scientists have used proteins or dyes to track activity in the nucleus, but those can be large and tend to be sensitive to light, making them hard to use with simple microscopy techniques.

Researchers have been exploring a class of nanoparticles called quantum dots, tiny specks of semiconductor material only a few molecules big that can be used to monitor microscopic processes and cellular conditions. Quantum dots offer the advantages of small size, bright fluorescence for easy tracking, and excellent stability in light.

“Lots of people rely on quantum dots to monitor biological processes and gain information about the cellular environment. But getting quantum dots into a cell for advanced applications is a problem,” said professor Min-Feng Yu, a professor of mechanical science and engineering.

Getting any type of molecule into the nucleus is even trickier, because it’s surrounded by an additional membrane that prevents most molecules in the cell from entering.

Yu worked with fellow mechanical science and engineering professor Ning Wang and postdoctoral researcher Kyungsuk Yum to develop a nanoneedle that also served as an electrode that could deliver quantum dots directly into the nucleus of a cell – specifically to a pinpointed location within the nucleus. The researchers can then learn a lot about the physical conditions inside the nucleus by monitoring the quantum dots with a standard fluorescent microscope.

“This technique allows us to physically access the internal environment inside a cell,” Yu said. “It’s almost like a surgical tool that allows us to ‘operate’ inside the cell.”

The group coated a single nanotube, only 50 nanometers wide, with a very thin layer of gold, creating a nanoscale electrode probe. They then loaded the needle with quantum dots. A small electrical charge releases the quantum dots from the needle. This provides a level of control not achievable by other molecular delivery methods, which involve gradual diffusion throughout the cell and into the nucleus.

“Now we can use electrical potential to control the release of the molecules attached on the probe,” Yu said. “We can insert the nanoneedle in a specific location and wait for a specific point in a biologic process, and then release the quantum dots. Previous techniques cannot do that.”

Because the needle is so small, it can pierce a cell with minimal disruption, while other injection techniques can be very damaging to a cell. Researchers also can use this technique to accurately deliver the quantum dots to a very specific target to study activity in certain regions of the nucleus, or potentially other cellular organelles.

“Location is very important in cellular functions,” Wang said. “Using the nanoneedle approach you can get to a very specific location within the nucleus. That’s a key advantage of this method.”

The new technique opens up new avenues for study. The team hopes to continue to refine the nanoneedle, both as an electrode and as a molecular delivery system.

They hope to explore using the needle to deliver other types of molecules as well – DNA fragments, proteins, enzymes and others – that could be used to study a myriad of cellular processes.

“It’s an all-in-one tool,” Wang said. “There are three main types of processes in the cell: chemical, electrical, and mechanical. This has all three: It’s a mechanical probe, an electrode, and a chemical delivery system.”

The team’s findings will appear in the Oct. 4 edition of the journal Small. The National Institutes of Health and the National Science Foundation supported this work.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>