Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A shocking diet


Researchers describe microbe that 'eats' electricity

There have been plenty of fad diets that captured the public's imagination over the years, but Harvard scientists have identified what may be the strangest of them all – sunlight and electricity.

Led by Peter Girguis, the John L. Loeb Associate Professor of the Natural Sciences, and Arpita Bose, a post-doctoral fellow in Organismic and Evolutionary Biology, a team of researchers showed that the commonly found bacterium Rhodopseudomonas palustris can use natural conductivity to pull electrons from minerals located deep in soil and sediment while remaining at the surface, where they absorb the sunlight needed to produce energy. The study is described in a February 26 paper in Nature Communications.

"When you think about electricity and living organisms, most people default to Mary Shelley's Frankenstein, but we've long understood that all organisms actually use electrons – what constitutes electricity – to do work," Girguis said. "At the heart of this paper is a process called extracellular electron transfer (EET), which involves moving electrons in and out of cells. What we were able to show is that these microbes take up electricity, which goes into their central metabolism, and we were able to describe some of the systems that are involved in that process."

In the wild, the microbes rely on iron to provide the electrons they need to fuel energy generation, but tests in the lab suggest the iron itself isn't critical for this process. By attaching an electrode to colonies of the microbes in the lab, researchers observed that they could take up electrons from a non-ferrous source, suggesting they might also use other electron-rich minerals – such as other metals and sulfur compounds – in the wild.

"That's a game-changer," Girguis said. "We have understood for a long time that the aerobic and anaerobic worlds interact mainly through the diffusion of chemicals into and out of those domains. Accordingly, we also believe this process of diffusion governs the rates of many biogeochemical cycles. But this research indicates…that this ability to do EET is, in a sense, an end-run around diffusion. That could change the way we think about the interactions between the aerobic and anaerobic worlds, and might change the way we calculate the rates of biogeochemical cycling."

Using genetic tools, researchers were also able to identify a gene that is critical to the ability to take up electrons. When the gene was turned off, Girguis said, the microbes' ability to take up electrons dropped by about a third.

"We are very interested in understanding exactly what that role that gene plays in electron uptake," Girguis said. "Related genes are found throughout other microbes in nature, and we aren't exactly sure what they're doing in those microbes. This offers some tantalizing evidence that other microbes carry out this process as well".

The foundation for the new study was laid more than two decades ago, when researchers first characterized a bacterium that "eats" rust by handing off electrons to the oxygen atoms that make up iron oxide molecules.

Researchers would later use the bacteria to construct a microbial "fuel cell" in which bacteria handed off electrons not to rust, but to an electrode that could harvest this current.

If some microbes could generate the energy they needed by moving electrons outside their cells, Girguis and colleagues wondered, could others do the same by taking electrons in?

"That question brought us back to iron," he said. "The microbes that are the focus of this paper are the mirror image of the ones that eat rust. Instead of using iron oxide to breathe, they actually make iron oxides from free iron."

Getting to that free iron, however, is no easy feat.

The microbes rely on sunlight to help generate energy, but the iron they need is found in sediments below the surface. To reach it, and still remain on the surface, Girguis said, the microbes have developed an unusual strategy. The microbes seem to take up electrons through naturally occurring conductive minerals. Also, as the microbes pull electrons away from iron, they create iron oxide crystals which precipitate into the soil around them. Over time, those crystals can become conductive and act as "circuits," allowing the microbes to oxidize minerals they otherwise couldn't reach.

"What that does is solve the paradox for this sunlight-dependent organism," Girguis said. "These single-celled microbes that grow in biofilms have come up with a way to electrically reach out and pull electrons from minerals in the soil so they can stay in the sun."

Though he remains skeptical about the efficacy of using microbes capable of performing EET for energy generation via fuel cells, Girguis said there are other applications – such as the pharmaceutical industry – where the microbes could be put to use.

"I think the biggest applied opportunity here is to use microbes that are capable of taking up electrons to produce something that is of interest," he said, "knowing you can give them electrons to do that through an electrode."

Peter Reuell | EurekAlert!
Further information:

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>