Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A shift in the code: New method reveals hidden genetic landscape


Scientists develop algorithm to uncover genomic insertions and deletions involved in autism, OCD

With three billion letters in the human genome, it seems hard to believe that adding a DNA base here or removing a DNA base there could have much of an effect on our health. In fact, such insertions and deletions can dramatically alter biological function, leading to diseases from autism to cancer.

The letters in the human genome carry instructions to make proteins, via a three-letter code. Each trio spells out a word, and the words are strung together in a sentence to build a specific protein. Inserting or deleting a letter ('e' in this example) shifts the three-letter code. Known as a frameshift, these mutations cause the remaining words to be misspelled and the protein sentence to become unintelligible.

Credit: J. Jansen/ Cold Spring Harbor Laboratory

Each dot represents a short sequence of DNA from the reads mapped to a gene. The red path spells out the normal version of the gene, while the yellow path spells out a truncated path with the indel. The blue 'spikes' show where there are other errors in the reads that have been mapped here.

Credit: M. Schatz/ Cold Spring Harbor Laboratory

Still, it is has been difficult to detect these mutations. Now, a team of scientists at Cold Spring Harbor Laboratory (CSHL) has devised a new way to analyze genome sequences that pinpoints so-called insertion and deletion mutations (known as "indels") in genomes of people with diseases such as autism, obsessive-compulsive disorder and Tourette syndrome.

The letters in the human genome carry instructions to make proteins, via a three-letter code. Each trio spells out a "word;" the words are then strung together in a sentence to build a specific protein. If a letter is accidentally inserted or deleted from our genome, the three-letter code shifts a notch, causing all of the subsequent words to be misspelled.

These "frameshift" mutations cause the protein sentence to become unintelligible. Loss of a single protein can have devastating effects for cells, leading to dysfunction and sometimes to serious diseases.

DNA insertions and deletions vary in length and sequence. Each indel can range in size from one DNA letter to thousands, and they are often highly repetitive. Their variability has made it challenging to identify indels, despite major advancements in genome sequencing technology. They are, in effect, regions of the genome that have remained hidden from view as researchers search for the mutations that cause disease.

A team of CSHL scientists, including Assistant Professors Mike Schatz, Gholson Lyon, and Ivan Iossifov, and Professor Michael Wigler, has devised a way to mine existing genomic datasets for indel mutations. The method, which they call Scalpel, begins by grouping together all of the sequences from a given genomic region. Scalpel – a computer formula, or algorithm – then creates a new sequence alignment for that area, much like piecing together parts of a puzzle.

"These indels are like very fine cuts to the genome – places where DNA is inserted or deleted – and Scalpel provides us with a computational lens to zoom in and see precisely where the cuts occur," says Schatz, a quantitative biologist. Such information is critical to understand the mutations that cause disease.

In work published today in Nature Methods, the team used Scalpel to search for indels in patient samples. Lyon, a CSHL researcher who is also a practicing psychiatrist, worked with his team to analyze a patient with severe Tourette syndrome and obsessive-compulsive disorder, identifying and validating more than a thousand indels to demonstrate the accuracy of the method.

The CSHL team performed a similar analysis to search for indels that are associated with autism. They explored a dataset of 593 families from the Simons Simplex Collection, a group composed entirely of families with one affected child but no other family members with the disorder. While the researchers discovered a total of 3.3 million indels across the 593 families, most appeared to be relatively harmless. Still, a few dozen mutations stood out to be specifically associated with autism. "All this adds to our body of knowledge about the spontaneous mutations that cause autism," says Schatz.

But the tool can be applied much more broadly. "We are collaborating with plant scientists, cancer biologists, and others, looking for indels," says Schatz. "This is a powerful tool, and we are looking forward to revealing new pieces of the genome that make a difference, throughout the tree of life."


This work was supported by US National Institutes of Health, US National Science Foundation, the CSHL Cancer Center Support Grant, the Stanley Institute for Cognitive Genomics, and the Simons Foundation.

"Accurate de novo and transmitted indel detection in exome-capture data using microassembly" appears online in Nature Methods on August 17, 2014. The authors are: Giuseppe Narzisi, Jason O'Rawe, Ivan Iossifov, Han Fang, Yoon-ha Lee, Zihua Wang, Yiyang Wu, Gholson Lyon, Michael Wigler, and Michael Schatz.

The paper can be obtained online at:

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for the impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 600 researchers and technicians strong and its Meetings & Courses program hosts more than 12,000 scientists from around the world each year to its Long Island campus and its China center. For more information, visit

Jaclyn Jansen | Eurek Alert!

Further reports about: CSHL DNA Laboratory analyze diseases disorder effect genomic landscape mutations sequence

More articles from Life Sciences:

nachricht New study reveals what's behind a tarantula's blue hue
01.12.2015 | University of California - San Diego

nachricht Tracing a path toward neuronal cell death
01.12.2015 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do Landslides control the weathering of rocks?

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent...

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

All Focus news of the innovation-report >>>



Event News

European Geosciences Union meeting: Media registration now open (EGU 2016 media advisory 1)

01.12.2015 | Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Latest News

USGS projects large loss of Alaska permafrost by 2100

01.12.2015 | Earth Sciences

New study reveals what's behind a tarantula's blue hue

01.12.2015 | Life Sciences

Climate Can Grind Mountains Faster Than They Can Be Rebuilt

01.12.2015 | Earth Sciences

More VideoLinks >>>