Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A shift in the code: New method reveals hidden genetic landscape

18.08.2014

Scientists develop algorithm to uncover genomic insertions and deletions involved in autism, OCD

With three billion letters in the human genome, it seems hard to believe that adding a DNA base here or removing a DNA base there could have much of an effect on our health. In fact, such insertions and deletions can dramatically alter biological function, leading to diseases from autism to cancer.


The letters in the human genome carry instructions to make proteins, via a three-letter code. Each trio spells out a word, and the words are strung together in a sentence to build a specific protein. Inserting or deleting a letter ('e' in this example) shifts the three-letter code. Known as a frameshift, these mutations cause the remaining words to be misspelled and the protein sentence to become unintelligible.

Credit: J. Jansen/ Cold Spring Harbor Laboratory


Each dot represents a short sequence of DNA from the reads mapped to a gene. The red path spells out the normal version of the gene, while the yellow path spells out a truncated path with the indel. The blue 'spikes' show where there are other errors in the reads that have been mapped here.

Credit: M. Schatz/ Cold Spring Harbor Laboratory

Still, it is has been difficult to detect these mutations. Now, a team of scientists at Cold Spring Harbor Laboratory (CSHL) has devised a new way to analyze genome sequences that pinpoints so-called insertion and deletion mutations (known as "indels") in genomes of people with diseases such as autism, obsessive-compulsive disorder and Tourette syndrome.

The letters in the human genome carry instructions to make proteins, via a three-letter code. Each trio spells out a "word;" the words are then strung together in a sentence to build a specific protein. If a letter is accidentally inserted or deleted from our genome, the three-letter code shifts a notch, causing all of the subsequent words to be misspelled.

These "frameshift" mutations cause the protein sentence to become unintelligible. Loss of a single protein can have devastating effects for cells, leading to dysfunction and sometimes to serious diseases.

DNA insertions and deletions vary in length and sequence. Each indel can range in size from one DNA letter to thousands, and they are often highly repetitive. Their variability has made it challenging to identify indels, despite major advancements in genome sequencing technology. They are, in effect, regions of the genome that have remained hidden from view as researchers search for the mutations that cause disease.

A team of CSHL scientists, including Assistant Professors Mike Schatz, Gholson Lyon, and Ivan Iossifov, and Professor Michael Wigler, has devised a way to mine existing genomic datasets for indel mutations. The method, which they call Scalpel, begins by grouping together all of the sequences from a given genomic region. Scalpel – a computer formula, or algorithm – then creates a new sequence alignment for that area, much like piecing together parts of a puzzle.

"These indels are like very fine cuts to the genome – places where DNA is inserted or deleted – and Scalpel provides us with a computational lens to zoom in and see precisely where the cuts occur," says Schatz, a quantitative biologist. Such information is critical to understand the mutations that cause disease.

In work published today in Nature Methods, the team used Scalpel to search for indels in patient samples. Lyon, a CSHL researcher who is also a practicing psychiatrist, worked with his team to analyze a patient with severe Tourette syndrome and obsessive-compulsive disorder, identifying and validating more than a thousand indels to demonstrate the accuracy of the method.

The CSHL team performed a similar analysis to search for indels that are associated with autism. They explored a dataset of 593 families from the Simons Simplex Collection, a group composed entirely of families with one affected child but no other family members with the disorder. While the researchers discovered a total of 3.3 million indels across the 593 families, most appeared to be relatively harmless. Still, a few dozen mutations stood out to be specifically associated with autism. "All this adds to our body of knowledge about the spontaneous mutations that cause autism," says Schatz.

But the tool can be applied much more broadly. "We are collaborating with plant scientists, cancer biologists, and others, looking for indels," says Schatz. "This is a powerful tool, and we are looking forward to revealing new pieces of the genome that make a difference, throughout the tree of life."

###

This work was supported by US National Institutes of Health, US National Science Foundation, the CSHL Cancer Center Support Grant, the Stanley Institute for Cognitive Genomics, and the Simons Foundation.

"Accurate de novo and transmitted indel detection in exome-capture data using microassembly" appears online in Nature Methods on August 17, 2014. The authors are: Giuseppe Narzisi, Jason O'Rawe, Ivan Iossifov, Han Fang, Yoon-ha Lee, Zihua Wang, Yiyang Wu, Gholson Lyon, Michael Wigler, and Michael Schatz.

The paper can be obtained online at: http://dx.doi.org/10.1038/nmeth.3069

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for the impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 600 researchers and technicians strong and its Meetings & Courses program hosts more than 12,000 scientists from around the world each year to its Long Island campus and its China center. For more information, visit http://www.cshl.edu

Jaclyn Jansen | Eurek Alert!

Further reports about: CSHL DNA Laboratory analyze diseases disorder effect genomic landscape mutations sequence

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>