Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A reductionist approach to HIV research

01.12.2009
A major obstacle to HIV research is the virus's exquisite specialisation for its human host – meaning that scientists' traditional tools, like the humble lab mouse, can deliver only limited information. Now, a team of researchers writing in BioMed Central's open access Journal of Biology have made an ingenious assault on this problem by creating a mouse that has key features of HIV infection without being infected with HIV.

George Kassiotis, from the Division of Immunoregulation at MRC National Institute for Medical Research, worked with a team of researchers to create mice whose CD4+ T cells, the cells eliminated by HIV infection, commit a kind of suicide upon activation.

He said, "Although these mice do not fully reproduce every aspect of human HIV-associated immune dysfunction, they do approximate two key immune alterations - CD4+ T cell immune deficiency and generalized immune activation. Further definition of the precise balance between CD4+ T cell killing and immune activation and deficiency will be vital to our understanding of the pathogenesis of immune deficiency virus infection."

The CD4+ T cells in the researchers' mice were engineered to express a toxin, diphtheria toxin A fragment, upon activation. This genetic self-destruct system causes the death of the cell within 48 hours. The resultant loss of activated immune cells caused the mice to exhibit symptoms with some similarities to those of immunodeficiency virus infection. There are clear differences between the mouse and a human infected with HIV, however, such as the fact that the ongoing depletion of nearly all activated CD4+ T cells in the mice does not result in the progressive erosion of naïve and memory CD4+ T cells seen during HIV infection. None-the-less, insights gained from this reductionist model can only help our understanding of human disease. In a commentary on the work in the same issue of Journal of Biology, experts on T cells and HIV at the US National Institutes of Health comment that the mouse will be as useful for its differences from human infection as it will for its similarities.

Notes to Editors:

1. Generalized immune activation as a direct result of activated CD4+ T cell killing
Rute Marques, Adam Williams, Urszula Eksmond, Andy Wullaert, Nigel Killeen, Manolis Pasparakis, Dimitris Kioussis and George Kassioti

Journal of Biology 2009, 8:93 doi:10.1186/jbiol194

2. Journal of Biology is an international journal that publishes biological research articles of exceptional interest or importance, together with associated commentary. Original research articles that are accepted for publication are published in full on the web within two weeks, and are immediately made freely available to all. Articles from the full spectrum of biology are appropriate for consideration, provided that they are of substantial interest or importance, or are likely to have a significant and lasting impact on their field.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com
http://jbiol.com/content/8/10/93

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>