Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A reductionist approach to HIV research

01.12.2009
A major obstacle to HIV research is the virus's exquisite specialisation for its human host – meaning that scientists' traditional tools, like the humble lab mouse, can deliver only limited information. Now, a team of researchers writing in BioMed Central's open access Journal of Biology have made an ingenious assault on this problem by creating a mouse that has key features of HIV infection without being infected with HIV.

George Kassiotis, from the Division of Immunoregulation at MRC National Institute for Medical Research, worked with a team of researchers to create mice whose CD4+ T cells, the cells eliminated by HIV infection, commit a kind of suicide upon activation.

He said, "Although these mice do not fully reproduce every aspect of human HIV-associated immune dysfunction, they do approximate two key immune alterations - CD4+ T cell immune deficiency and generalized immune activation. Further definition of the precise balance between CD4+ T cell killing and immune activation and deficiency will be vital to our understanding of the pathogenesis of immune deficiency virus infection."

The CD4+ T cells in the researchers' mice were engineered to express a toxin, diphtheria toxin A fragment, upon activation. This genetic self-destruct system causes the death of the cell within 48 hours. The resultant loss of activated immune cells caused the mice to exhibit symptoms with some similarities to those of immunodeficiency virus infection. There are clear differences between the mouse and a human infected with HIV, however, such as the fact that the ongoing depletion of nearly all activated CD4+ T cells in the mice does not result in the progressive erosion of naïve and memory CD4+ T cells seen during HIV infection. None-the-less, insights gained from this reductionist model can only help our understanding of human disease. In a commentary on the work in the same issue of Journal of Biology, experts on T cells and HIV at the US National Institutes of Health comment that the mouse will be as useful for its differences from human infection as it will for its similarities.

Notes to Editors:

1. Generalized immune activation as a direct result of activated CD4+ T cell killing
Rute Marques, Adam Williams, Urszula Eksmond, Andy Wullaert, Nigel Killeen, Manolis Pasparakis, Dimitris Kioussis and George Kassioti

Journal of Biology 2009, 8:93 doi:10.1186/jbiol194

2. Journal of Biology is an international journal that publishes biological research articles of exceptional interest or importance, together with associated commentary. Original research articles that are accepted for publication are published in full on the web within two weeks, and are immediately made freely available to all. Articles from the full spectrum of biology are appropriate for consideration, provided that they are of substantial interest or importance, or are likely to have a significant and lasting impact on their field.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com
http://jbiol.com/content/8/10/93

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>