Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A recent IRCM breakthrough impacts cancer research

Researchers uncover a key mechanism in the control of cell motility

A team of scientists at the Institut de recherches cliniques de Montréal (IRCM) led by Dr. Jean-François Côté, Director of the Cytoskeletal Organization and Cell Migration research unit, identified a novel molecular mechanism in the control of cell motility.

Their findings were published online today in Current Biology, a journal from the Cell Press group. This scientific breakthrough could eventually lead to the development of new cancer-treating drugs that could block the spread of tumours (metastasis).

"As many as 90% of cancer patient deaths are attributable to metastasis, which explains the importance of understanding the molecular mechanisms at the basis of this harmful process," says Dr. Côté. "This is why, over the past few years, we have focused our research on DOCK180, a protein involved in intracellular signalling networks, and more particularly on the DOCK180/Rac1 signalling pathway, which is suspected to be a key mediator of tumour metastasis."

Unlike normal cells that migrate throughout embryonic and adult life to perform their specialized functions, cancer cells metastasize in order to lethally spread throughout the body. At a molecular level, DOCK180 specifically activates the small Rac1 protein, which, in turn, modifies a cell's shape and promotes cell motility and invasion. Dr. Côté's team had previously demonstrated in detail how DOCK180, with the help of its binding partner ELMO, acts on Rac1 to promote robust cell migration.

"We knew that this signalling pathway had to be regulated to prevent uncontrolled cell migration in normal conditions, but until now, the mechanisms involved had been eluding us and other scientists," explains Manishha Patel, a PhD student in Dr. Côté's laboratory and co-author of the study. "With our recent findings, we demonstrated that the ELMO protein closes in on itself to enter a repressed state, thus preventing the activation of the DOCK180/Rac pathway."

"Our team identified three regions in ELMO that allow it to toggle between a closed/inactive and open/active shape," adds Dr. Yoran Margaron, a postdoctoral fellow in the same research unit and one of the article's co-authors. "We showed that if we disrupt ELMO's regulatory feature and maintain the protein in an open state, we can fully activate the DOCK180/Rac pathway and significantly increase the migration potential of cells."

The researchers' next step is to investigate the regulation of ELMO in cancer cells. Based on their latest findings, they will attempt to maintain ELMO in a repressed state within cancer cells to prevent metastasis, which could have a major impact on the development of potential cancer treatments.

This research project was supported by the Canadian Institutes of Health Research (CIHR) and the Canadian Foundation for Innovation (CFI). Other collaborators for this study include Nadine Fradet, Qi Yang and Brian Wilkes from the IRCM, as well as Dr. Michel Bouvier from the Institut de recherche en immunologie et en cancérologie (IRIC), and Dr. Kay Hoffman from Miltenyi Biotec in Germany.

For more information, please refer to the online article published by Current Biology. The print publication will be available on November 23, 2010.

Julie Langelier | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>