Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A protein that can mean life or death for cells

18.09.2013
A research team at IRB discovers that Mitofusin 2 confers the cell with the sensitivity to understand its state of health, and determine whether it should be repaired or undergo apoptosis

With this new function, Mitofusin 2 becomes a viable target to intervene in diseases such as neurodegeneration and cancer.


In the image, the ER of a cell with the Mfn2 protein (left) and without it. On the right, the ER form vesicles which indicates that the organelle is completely disorganized and unable to respond correctly to cellular stress (JP Muñoz)

Each cell in an organism has a sensor that measures the health of its "internal" environment. This "alarm" is found in the endoplasmic reticulum (ER), which is able to sense cellular stress and trigger either rescue responses or the death of the cell. A team from the Institute for Research in Biomedicine (IRB), in Barcelona, has discovered that the protein Mitofusin 2 (Mfn2) plays a crucial role in correctly measuring stress levels, and also makes sure the pathways of cell repair or cell death are effective.

The researchers reveal some of the molecular mechanisms that connect Mfn2 to endoplasmic reticulum stress in the latest edition of the scientific journal, EMBO Journal, from the Nature Group, published by the European Molecular Biology Organization.

When the scientists removed Mfn2 from the cell under conditions of cell stress, the endoplasmic reticulum responded by over-activating the repair pathways. By doing so, it contradictorily functioned worse, reducing the capacity of cells to overcome the stress insult and promoting to a lesser degree apoptotic cell death. “When Mfn2 is removed, the cellular stress response pathways are completely disrupted,” says Antonio Zorzano, coordinator of IRB’s Molecular Medicine Programme and leader of the group “Heterogenic and polygenic diseases".

Not only diabetes

Mfn2 is a mitochondrial protein whose deficiency is related to diabetes. In an earlier publication in Proceedings of the National Academy of Sciences (PNAS), Dr. Zorzano’s research team demonstrated that without Mfn2, tissues become resistant to insulin, a characteristic of diabetes and the so-called metabolic syndrome. In this study, they also observed that the cells had higher endoplasmic reticulum stress.

The current study investigates the relationship between mitochondria and the endoplasmic reticulum, and indicates that changes in mitochondria, caused by the loss of the Mfn2 protein, directly affect the endoplasmic reticulum function. “We have shown that Mfn2 is important for cell viability and has implications for numerous diseases, such as neurodegeration, cancer, cardiovascular disease, in addition to diabetes,” says postdoctoral researcher Juan Pablo Muñoz, first author of the study.

Is Mitofusin 2 a good therapeutic target?

“The fact that we can modulate cell damage response with Mfn2 opens a wide window of possible therapeutic avenues for further study,” says Muñoz. The Chilean scientist at IRB explains that tumour cells don’t activate cell death properly and proliferate uncontrolled. “Cancer cells have already been noted to have low Mfn2 levels, and if we could increase such levels, we would be able to promote apoptosis,” he continues. According to this, other research teams have already published work indicating that the overexpression of Mfn2 induce apoptosis.

To demonstrate the utility of Mfn2 as a target, the researchers now need to find a small molecule, or drug, that modulates its expression in animals. “Our work published on Mfn2 is a proof of concept that highlights the importance of this mitochondrial protein for cell health,” says Zorzano. One of the challenges of the group is to secure funding to perform a massive screening of molecules with the ability to modulate Mfn2 expression and confirm its effects in mice.

Reference article:
Mfn2 modulates the UPR and mitochondrial function via repression of PERK
Juan Pablo Muñoz, Saška Ivanova, Jana Sánchez-Wandelmer, Paula Martínez-Cristóbal, Eduard Noguera, Ana Sancho, Angels Díaz-Ramos, María Isabel Hernández-Alvarez, David Sebastián, Caroline Mauvezin, Manuel Palacín and Antonio Zorzano

The EMBO Journal (2013) 32, 2348 - 2361. doi:10.1038/emboj.2013.168

Sònia Armengou | EurekAlert!
Further information:
http://www.irbbarcelona.org

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>