Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A protein couple controls flow of information into the brain’s memory center

25.07.2014

New findings on the link between nerve cells at the interface to the hippocampus

Neuroscientists in Bonn and Heidelberg have succeeded in providing new insights into how the brain works. Researchers at the DZNE and the German Cancer Research Center (DKFZ) analyzed tissue samples from mice to identify how two specific proteins, ‘CKAMP44’ and ‘TARP Gamma-8’, act upon the brain’s memory center.


Granule cells connect with other cells via long projections (dendrites). The actual junctions (synapses) are located on thorn-like protuberances called "spines”. Spines are shown in green in the computer reconstruction. Source: DZNE/Michaela Müller

These molecules, which have similar counterparts in humans, affect the connections between nerve cells and influence the transmission of nerve signals into the hippocampus, an area of the brain that plays a significant role in learning processes and the creation of memories.

The results of the study have been published in the journal Neuron.Brain function depends on the active communication between nerve cells, known as neurons. For this purpose, neurons are woven together into a dense network where they constantly relay signals to one another. However, neurons do not form direct contacts with each other. Instead they are separated by an extremely narrow gap, known as the synapse. This gap is bridged by ‘neurotransmitters’, which carry nerve signals from one cell to the next.

Docking stations

Specific molecular complexes in the cell’s outer shell, so-called ‘receptors’, receive the signal by binding the neurotransmitters. This triggers an electrical impulse in the receptor-bearing cell and thus the nerve signal has moved on one neuron further.

In the current study, a team led by Dr Jakob von Engelhardt focused on the AMPA receptors. These bind the neurotransmitter glutamate and are particularly common in the brain. “We looked at AMPA receptors in an area of the brain, which constitutes the main entrance to the hippocampus,” explains von Engelhardt, who works for the DZNE and DKFZ. “The hippocampus is responsible for learning and memory formation. Among other things it processes and combines sensory perception. We therefore asked ourselves how the flow of information into the hippocampus is controlled.”

A pair of helpers

Dr von Engelhardt’s research team specifically focused on two protein molecules: ‘CKAMP44’ and ‘TARP Gamma-8’. These proteins are present, along with AMPA receptors, in the ‘granule’ cells, which are neurons that receive signals from areas outside of the hippocampus. It was already known that these proteins form protein complexes with AMPA receptors. “We have now found out that they exert a significant influence on the functioning of glutamate receptors. Each in its own way, as chemically they are completely different,” says the neuroscientist. “We identified that the ability of a nerve cell to receive signals doesn’t depend solely on the actual receptors; CKAMP44 and TARP Gamma-8 are just as important. Their function cannot be separated from that of the receptors.”

This was the result of an analysis in which the researchers compared brain tissue from mice with a natural genotype with brain tissue from genetically modified mice. Neurons in the genetically modified animals were not able to produce either CKAMP44 or TARP Gamma-8 or both.

Long-term effect

The researchers discovered, among other things, that both proteins promote the transportation of glutamate receptors to the cell surface. “This means they influence how receptive the nerve cell is to incoming signals,” says von Engelhardt.

However, the number of receptors and thus the signal reception can be altered by neuronal activity. The von Engelhardt group found that in this regard the auxiliary molecules have different effects: TARP Gamma-8 is essential to ensure that more AMPA receptors are integrated into the synapse following a plasticity induction protocol, whereas CKAMP44 plays no role in this context. “Synapses alter their communication depending on their activity. This ability is called plasticity. Some of the changes involved are only temporary, others may last longer,” explains von Engelhardt. “TARP Gamma-8 influences long-term plasticity. It makes the cell able to strengthen synaptic communication for a prolonged time-period. The larger the number of receptors on the receiving side of the synapse, the better the neuronal connection.”

The number of receptors doesn’t change suddenly, but remains largely stable for a certain amount of time. “This condition may last for hours, days or even longer. This long-term effect is essential for the creation of memories. We can only remember things if the connections between neurons undergo a long-lasting change,” says the scientist.

Fast sequence of signals

However, CKAMP44 and TARP Gamma-8 also act over shorter periods of time. The research team discovered that the molecules affect how quickly the AMPA receptors return to a receptive state. “If glutamate has docked on to a receptor, it takes a while until the receptor can react to the next neurotransmitter. CKAMP44 lengthens this period. In contrast, TARP Gamma-8 helps the receptor to recover more quickly,” says von Engelhardt.

Hence, CKAMP44 temporarily weakens the synaptic connection, while TARP Gamma-8 strengthens it. Through the interplay of these proteins the synapse is able to tune its sensitivity to a specific level. This condition can last from milliseconds to a few seconds before the strength of the connection is again adapted. Specialists refer to this as “short-term plasticity”.

“These molecules ultimately influence how well the nerve cell is able to react to a rapid succession of signals,” the scientist summarises the findings. “Such a rapid firing enables neuronal networks to synchronize their activity, which is a common process in the brain.”

Sensitive balance

Much to the researchers’ surprise, it turned out that the two proteins influence not only the synapse but also the shape of the nerve cells. In the absence of these auxiliary molecules, the neurons have fewer dendrites to establish contact with other nerve cells. “The organism can use CKAMP44 and TARP Gamma-8 molecules to regulate neuronal connections in a number of ways,” von Engelhardt says. “This ability depends on the balance between the partners, as to some extent they have a contrary effect. The way in which the neurons of the hippocampus react to signals from other regions of the brain is therefore highly dependent on the presence and the expression ratio of these molecules.”

Since the two molecules act directly on the structure and function of synapses of granule cells, Jakob von Engelhardt considers it probable that they also have an influence on learning and memory.
Original publication
Co-expressed auxiliary subunits exhibit distinct modulatory profiles on AMPA receptor function.
Konstantin Khodosevich, Eric Jacobi, Paul Farrow, Anton Schulmann, Alexandru Rusu, Ling Zhang, Rolf Sprengel, Hannah Monyer, Jakob von Engelhardt. Neuron (2014). doi:10.1016/j.neuron.2014.07.004.

A video abstract is availbale at
http://youtu.be/YHT0a7DEuHs 


Contact
Dr. Marcus Neitzert
Science Editor
DZNE
+49 (0) 228/43302-271
marcus.neitzert(at)dzne.de


Dr. Stefanie Seltmann
Head of Press and Public Relations
DKFZ, Heidelberg
+49 (0) 6221/422854
s.seltmann(at)dkfz.de

Dr. Marcus Neitzert | idw - Informationsdienst Wissenschaft
Further information:
http://www.dzne.de/en/about-us/public-relations/meldungen/2014/press-release-no-10.html

Further reports about: AMPA DKFZ DZNE TARP ability activity connection couple function glutamate neurons plasticity proteins receptor signals

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>