Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How does a plant survive with few mates or pollinators? A European herb has figured out its own way

11.11.2011
Reproductive assurance in a self-compatible, annual, monocarpic herb, Centaurium erythraea

In plants that rely on animals for pollination, the number of seeds they produce, or their relative fitness, is influenced by pollinator visits and the successful deposition of pollen.

The number of visits a plant may receive depends partly on pollinator density as well as on conspecific plant density. But what if a plant happens to grow in a population that is small or has very few pollinators visiting its flowers?

Will all the effort put into flowering and attracting pollinators have gone to waste? Some plants, including a bright pink, short-lived, western European herb, have found a way to ensure their future reproductive fitness despite such limitations.

When few pollinators are available, plants are visited less often, and thus do not receive as much pollen and produce fewer seeds than they would under more optimal conditions. Additionally, when plants occur in small populations, pollinator behavior may change, which also influences pollen deposition rates and pollen quality—pollinators may increase the amount of time they spend at each flower on the same plant (depositing more self-pollen) or may switch to foraging on other more abundant flowering species (depositing more hetero-specific pollen).

Some plant species have coped with such unpredictable situations by evolving autonomous selfing, where a flower can self-pollinate without the help of a pollinator. However, there may be variable costs of inbreeding depression associated with relying entirely on this mode of reproduction.

Rein Brys and colleagues (from the Terrestrial Ecology Unit, University of Ghent, Belgium and the Plant Ecology Unit, University of Leuven, Belgium) investigated to what extent population size and pollinator availability affected the number of seeds that were produced via self-pollination in the monocarpic herb Centaurium erythraea in a highly fragmented dune area in Belgium. They published their findings in the November issue of the American Journal of Botany (http://www.amjbot.org/content/98/11/1834.full.pdf+html).

Centaurium erythraea is pollinated primarily by hoverflies. However, when Brys and his colleagues first started working on this species, they noticed an extraordinary thing. "A remarkable characteristic of this species," notes Brys, "is its surprising and elegant way of realizing delayed selfing, in which anthers curl at the end of a flowers' life in order to shed pollen and guarantee self-pollination."

In situations where autonomous self-fertilization occurs after the chance of out-crossed pollination (e.g., at the end of a flower's life), then autonomous selfing ensures that the plant has at least some chance of passing its genes on to the next generation. This delayed selfing may incur no costs of pollen and/or ovule discounting and may provide reproductive assurance when successful pollinator-mediated seed production fails.

To test the reproductive assurance hypothesis under circumstances where plant populations varied in size and pollinator availability, Brys and colleagues used emasculation experiments in 22 C. erythraea populations, and compared the seed set of flowers in which anthers were removed prior to flowering—and thus could not self-pollinate—with unmanipulated control flowers that were still able to self-pollinate. For each population they determined plant population size (by counting the number of flowering individuals) and pollinator density (using insect traps), and examined how seed set varied with these factors.

The authors found that pollinator-mediated seed set significantly depended upon population size and pollinator availability. The contribution of autonomous seed set, on the other hand, varied greatly among the populations studied, accounting for 19% to 87% of total seed production. More self-pollinated seeds were produced in plants found in populations that were smaller and/or had fewer pollinators, indicating that when pollinators were scarce, plants were able to augment seed production via autonomous self-pollination—a good back-up plan that potentially ensures a constant seed set despite varying environmental variables.

"Our study is one of the first that clearly reveals that delayed selfing in this hoverfly-pollinated short-lived herb confers reproductive assurance and thus functions as a perfect back-up strategy to rely on in unpredictable pollination environments—when populations become small and/or pollinator limited," comments Brys.

"Another remarkable finding," he adds, "is that we were able to show that under these variable pollination environments this mode of autonomous selfing guarantees constant seed set overall."

Indeed, delayed selfing seems to be the perfect solution for this species, which is often found in transient habitats in which population size and pollinators may vary tremendously.

Brys and colleagues now want to delve a little deeper and investigate whether this system of mixed mating represents a stable mating strategy or is just a transient phase towards an obligate selfing or outcrossing mating strategy. "We are also investigating which floral traits may cause variation in the ability to provide reproductive assurance and consequently function as a target of selection," Brys said, "given the observation that the species shows relatively high and variable levels of inbreeding depression."

Brys, Rein, Eske de Crop, Maurice Hoffmann, and Hans Jacquemyn. (2011). Importance of autonomous selfing is inversely related to population size and pollinator availability in a monocarpic plant. American Journal of Botany 98(11): 1834-1840. DOI: 10.3732/ajb.1100154

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at http://www.amjbot.org/content/98/11/1834.full.pdf+html. After this date, reporters may contact Richard Hund at ajb@botany.org for a copy of the article.

The Botanical Society of America (www.botany.org) is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany (www.amjbot.org) for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at ajb@botany.org

Richard Hund | EurekAlert!
Further information:
http://www.botany.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>