Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How does a plant survive with few mates or pollinators? A European herb has figured out its own way

Reproductive assurance in a self-compatible, annual, monocarpic herb, Centaurium erythraea

In plants that rely on animals for pollination, the number of seeds they produce, or their relative fitness, is influenced by pollinator visits and the successful deposition of pollen.

The number of visits a plant may receive depends partly on pollinator density as well as on conspecific plant density. But what if a plant happens to grow in a population that is small or has very few pollinators visiting its flowers?

Will all the effort put into flowering and attracting pollinators have gone to waste? Some plants, including a bright pink, short-lived, western European herb, have found a way to ensure their future reproductive fitness despite such limitations.

When few pollinators are available, plants are visited less often, and thus do not receive as much pollen and produce fewer seeds than they would under more optimal conditions. Additionally, when plants occur in small populations, pollinator behavior may change, which also influences pollen deposition rates and pollen quality—pollinators may increase the amount of time they spend at each flower on the same plant (depositing more self-pollen) or may switch to foraging on other more abundant flowering species (depositing more hetero-specific pollen).

Some plant species have coped with such unpredictable situations by evolving autonomous selfing, where a flower can self-pollinate without the help of a pollinator. However, there may be variable costs of inbreeding depression associated with relying entirely on this mode of reproduction.

Rein Brys and colleagues (from the Terrestrial Ecology Unit, University of Ghent, Belgium and the Plant Ecology Unit, University of Leuven, Belgium) investigated to what extent population size and pollinator availability affected the number of seeds that were produced via self-pollination in the monocarpic herb Centaurium erythraea in a highly fragmented dune area in Belgium. They published their findings in the November issue of the American Journal of Botany (

Centaurium erythraea is pollinated primarily by hoverflies. However, when Brys and his colleagues first started working on this species, they noticed an extraordinary thing. "A remarkable characteristic of this species," notes Brys, "is its surprising and elegant way of realizing delayed selfing, in which anthers curl at the end of a flowers' life in order to shed pollen and guarantee self-pollination."

In situations where autonomous self-fertilization occurs after the chance of out-crossed pollination (e.g., at the end of a flower's life), then autonomous selfing ensures that the plant has at least some chance of passing its genes on to the next generation. This delayed selfing may incur no costs of pollen and/or ovule discounting and may provide reproductive assurance when successful pollinator-mediated seed production fails.

To test the reproductive assurance hypothesis under circumstances where plant populations varied in size and pollinator availability, Brys and colleagues used emasculation experiments in 22 C. erythraea populations, and compared the seed set of flowers in which anthers were removed prior to flowering—and thus could not self-pollinate—with unmanipulated control flowers that were still able to self-pollinate. For each population they determined plant population size (by counting the number of flowering individuals) and pollinator density (using insect traps), and examined how seed set varied with these factors.

The authors found that pollinator-mediated seed set significantly depended upon population size and pollinator availability. The contribution of autonomous seed set, on the other hand, varied greatly among the populations studied, accounting for 19% to 87% of total seed production. More self-pollinated seeds were produced in plants found in populations that were smaller and/or had fewer pollinators, indicating that when pollinators were scarce, plants were able to augment seed production via autonomous self-pollination—a good back-up plan that potentially ensures a constant seed set despite varying environmental variables.

"Our study is one of the first that clearly reveals that delayed selfing in this hoverfly-pollinated short-lived herb confers reproductive assurance and thus functions as a perfect back-up strategy to rely on in unpredictable pollination environments—when populations become small and/or pollinator limited," comments Brys.

"Another remarkable finding," he adds, "is that we were able to show that under these variable pollination environments this mode of autonomous selfing guarantees constant seed set overall."

Indeed, delayed selfing seems to be the perfect solution for this species, which is often found in transient habitats in which population size and pollinators may vary tremendously.

Brys and colleagues now want to delve a little deeper and investigate whether this system of mixed mating represents a stable mating strategy or is just a transient phase towards an obligate selfing or outcrossing mating strategy. "We are also investigating which floral traits may cause variation in the ability to provide reproductive assurance and consequently function as a target of selection," Brys said, "given the observation that the species shows relatively high and variable levels of inbreeding depression."

Brys, Rein, Eske de Crop, Maurice Hoffmann, and Hans Jacquemyn. (2011). Importance of autonomous selfing is inversely related to population size and pollinator availability in a monocarpic plant. American Journal of Botany 98(11): 1834-1840. DOI: 10.3732/ajb.1100154

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at After this date, reporters may contact Richard Hund at for a copy of the article.

The Botanical Society of America ( is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany ( for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at

Richard Hund | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>