Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Strategy to Analyze The Cellular World

23.09.2014

CNMPB scientists develop new tool to analyze cellular structures via high- resolution imaging. Published May 26th, 2014 in the Journal of Cell Biology.

 In the past two decades, super-resolution microscopy has been one of the fastest evolving fields through many technical improvements. However, the development of new labeling tools, probes and their biological application, is mostly lagging behind the technical capabilities.


From left to right: Prof. Dr. Silvio O. Rizzoli, Natalia Revelo, Dr. Dirk Kamin, Sven Truckenbrodt.

AG Rizzoli

Most recently, Prof. Silvio O. Rizzoli from the Cluster of Excellence and DFG- Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) has developed together with his team a new technique that expands the benefit of super- resolution microscopy to study biological questions.

This method contributes to understand on how cells renew, distribute and transport their molecular and subcellular components. The new technique was published on May 26th in the Journal of Cell Biology.

Original Publication:
Revelo NH, Kamin D, Truckenbrodt S, Wong AB, Reuter K, Reisinger E, Moser T, Rizzoli SO (2014) A new probe for super-resolution imaging of membranes elucidates trafficking pathways. J CELL BIOL, May 26; 205(4): 591-606.

All cells rely on the recycling of membranes via various pathways (secretion, uptake, and membrane turnover). Several types of cellular organelles such as the plasma membrane, the endoplasmic reticulum, the Golgi apparatus, endosomes and vesicles are involved in these processes.

However, it was difficult to identify the protein composition of the involved organelles since both, the membranes and the proteins of the same organelle need to be marked simultaneously. Here the main difficulty comes with the membrane probe, as almost all dyes that work excellent in live cell experiments are only poorly fixable and get “lost” during the antibody staining procedure.

The research team with first author Natalia Revelo therefore developed a membrane probe that overcomes this problem. The probe mCLING (membrane-binding fluorophore-Cysteine- Lysine-Palmitoyl Group) is a composition of a short polypeptide coupled to a membrane anchor and a fluorophore.

The study, recently published in the Journal of Cell Biology, shows that mCLING can be used to label the plasma membrane, and also to faithfully track specific organelles, which can be done in conjunction with fixation and immunostaining, in both cell culture and in tissue.

The utility of the mCLING probe could be characterized for various important biological model systems and already enabled the authors to answer long-lasting question in the field of membrane recycling. Moreover, mCLING imaging could also be extended to different processes.

For example, the structure and molecular organization of isolated organelles in vitro, or the arrangement of proteins on the membranes of various types of cells, can be easily tackled with mCLING. These efforts will be aided by the fact that mCLING can be optimized for any available super-resolution technique.

Prof. Dr. Silvio O. Rizzoli is head of the Department of Neuro- and Sensory Physiology at the University Medical Center Göttingen and member of the Göttingen Cluster of Excellence and DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB). His research focus includes the identification of molecular signal transduction processes between nerve cells.

Prof. Rizzoli applies super-resolution microscopy techniques to study the transport and function of intracellular vesicles in the synapses of nerve cells. Very recently, Prof. Rizzoli received for the second time with a prestigious funding award of the European Union for his excellent research proposal.

MORE INFORMATION
Prof. Dr. Silvio O. Rizzoli
University Medical Center Göttingen Department Neuro- & Sensory Physiology
c/o European Neuroscience Institute (ENI) Grisebachstraße 5, 37077 Göttingen
Phone 0551 / 39-33630, srizzol@gwdg.de

CNMPB – Center for Nanoscale Microscopy and Molecular Physiology of the Brain Cluster of Excellence 171 – DFG Research Center 103
Dr. Heike Conrad
Scientific Coordination, Press & Public Relations
Humboldtallee 23, 37073 Göttingen
Phone 0551 / 39-7065, heike.benecke@med.uni-goettingen.de

Weitere Informationen:

http://rizzoli-lab.de - Department Prof. Dr. Silvio O. Rizzoli
http://www.cnmpb.de - Cluster of Excellence and DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain

Dr. Heike Conrad | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>