Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Connection between Metabolism and Regulation

22.12.2014

Heidelberg scientists discover modified ribonucleic acids in bacteria

In cells, ribonucleic acids (RNAs) are most commonly known as messengers or scaffold molecules, but they can also accelerate key biochemical reactions and regulate metabolic pathways. These regulatory RNAs were discovered just a few years ago.

In studies on bacteria, scientists from Heidelberg University have now found previously unknown modifications in the RNAs that contribute to their stability against the degradation mechanisms of the cell. Among other things, regulatory RNAs are associated with cancer development and bacterial infections. The findings of the research at the Institute of Pharmacy and Molecular Biotechnology were published in the journal “Nature”.

In bacteria, most of these regulatory RNAs act by binding other RNA molecules, e.g. messenger RNAs, thereby triggering the degradation of the resulting complexes. As a consequence, the bound RNAs are no longer available for the biosynthesis of proteins, Prof. Dr. Andres Jäschke of the Institute of Pharmacy and Molecular Biotechnology explains.

“So far, regulatory RNAs had been assumed to be composed of the four standard building blocks, the nucleotides A, C, G and U. We were now able to show that some regulatory RNAs in the gut bacterium Escherichia coli carry a particular modification at their ends that confers increased stability against the cell’s degradation machinery.” Furthermore, the team headed by Prof. Jäschke found an enzyme that can remove this modifying cap and release the previously protected RNA for degradation. According to Prof. Jäschke, the modifier is an “old acquaintance”, i.e. nicotinamide adenine dinucleotide (NAD), which assumes a key role in the metabolism of both bacteria and higher organisms.

These NAD-modified regulatory RNAs can be isolated by a novel method that was developed by chemist Dr. Hana Cahová and biotechnologist Dr. Marie-Luise Winz. In their approach, an enzyme from a marine mollusc and a technique known as “click chemistry” were used to label only the NAD-modified RNA molecules contained in a total RNA sample, while all others remained unaltered.

The labelled RNAs can thus be selectively isolated and identified by high-throughput sequencing and comparison with databases. “For many of the modified RNAs we identified, no biological function is known to date. Interestingly, others have been described in the context of cellular metabolism or associated with the bacterial response to ‘stress’ caused by extreme environmental conditions,” Andres Jäschke notes.

The scientists have now looked into the question why a bacterium modifies some of its regulatory RNAs with NAD. “As the chemical nature of the ends was known to be a key factor in the degradation of RNA by cellular enzymes, we assumed that the NAD modification might stabilize the RNA,” says biotechnologist Katharina Höfer. Together with biochemist Gabriele Nübel, she thus investigated several known degradation pathways.

The researchers could indeed demonstrate a significantly increased stabilisation against two modification and degradation enzymes. As it would be useful for the cell to cleave off the protective cap once its purpose is fulfilled, the scientists tested further enzymes and discovered what they were looking for yet again: one of the enzymes was able to remove NAD and thus initiate RNA degradation.

Andres Jäschke’s team suspect the attached NAD to have additional functions. “The nicotinamide adenine dinucleotide interacts with many proteins in a specific manner, so the NAD-RNAs might form protein complexes as well, which, in turn, might regulate various processes in the bacterium. In addition, NAD can occur in the cell in two different forms, namely in an oxidised and in a reduced one. The equilibrium between these two states may influence and modulate the biological function of NAD-RNAs,” Prof. Jäschke explains.

While protective caps at the ends of RNA have been known for decades in higher organisms, this is the first study to report a cap-like – but chemically different – structure in bacteria, according to the scientists. These investigations open up a new research area, as the biological functions and the mechanisms of this new modification now need to be clarified. “We are particularly interested to find out whether these NAD modifications are present in bacteria only or in higher organisms as well,” comments Andres Jäschke. “If this were a phenomenon specific to bacteria, it might provide clues for new antibacterial treatments.”

The research work was supported by fellowships from the Alexander von Humboldt Foundation and the Hartmut Hoffmann-Berling International Graduate School for Molecular and Cellular Biology (HBIGS) of Heidelberg University.

Original Publication:
Cahová, H., Winz, M.-L., Höfer, K., Nübel, K. & Jäschke, A.: NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature (22 December 2014), DOI 10.1038/nature14020

Internet information:
http://www.jaeschke.uni-hd.de

Contact:
Prof. Dr. Andres Jäschke
Institute of Pharmacy und Molecular Biotechnology
Phone +49 6221 54-4853
jaeschke@uni-hd.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>