Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Connection between Metabolism and Regulation

22.12.2014

Heidelberg scientists discover modified ribonucleic acids in bacteria

In cells, ribonucleic acids (RNAs) are most commonly known as messengers or scaffold molecules, but they can also accelerate key biochemical reactions and regulate metabolic pathways. These regulatory RNAs were discovered just a few years ago.

In studies on bacteria, scientists from Heidelberg University have now found previously unknown modifications in the RNAs that contribute to their stability against the degradation mechanisms of the cell. Among other things, regulatory RNAs are associated with cancer development and bacterial infections. The findings of the research at the Institute of Pharmacy and Molecular Biotechnology were published in the journal “Nature”.

In bacteria, most of these regulatory RNAs act by binding other RNA molecules, e.g. messenger RNAs, thereby triggering the degradation of the resulting complexes. As a consequence, the bound RNAs are no longer available for the biosynthesis of proteins, Prof. Dr. Andres Jäschke of the Institute of Pharmacy and Molecular Biotechnology explains.

“So far, regulatory RNAs had been assumed to be composed of the four standard building blocks, the nucleotides A, C, G and U. We were now able to show that some regulatory RNAs in the gut bacterium Escherichia coli carry a particular modification at their ends that confers increased stability against the cell’s degradation machinery.” Furthermore, the team headed by Prof. Jäschke found an enzyme that can remove this modifying cap and release the previously protected RNA for degradation. According to Prof. Jäschke, the modifier is an “old acquaintance”, i.e. nicotinamide adenine dinucleotide (NAD), which assumes a key role in the metabolism of both bacteria and higher organisms.

These NAD-modified regulatory RNAs can be isolated by a novel method that was developed by chemist Dr. Hana Cahová and biotechnologist Dr. Marie-Luise Winz. In their approach, an enzyme from a marine mollusc and a technique known as “click chemistry” were used to label only the NAD-modified RNA molecules contained in a total RNA sample, while all others remained unaltered.

The labelled RNAs can thus be selectively isolated and identified by high-throughput sequencing and comparison with databases. “For many of the modified RNAs we identified, no biological function is known to date. Interestingly, others have been described in the context of cellular metabolism or associated with the bacterial response to ‘stress’ caused by extreme environmental conditions,” Andres Jäschke notes.

The scientists have now looked into the question why a bacterium modifies some of its regulatory RNAs with NAD. “As the chemical nature of the ends was known to be a key factor in the degradation of RNA by cellular enzymes, we assumed that the NAD modification might stabilize the RNA,” says biotechnologist Katharina Höfer. Together with biochemist Gabriele Nübel, she thus investigated several known degradation pathways.

The researchers could indeed demonstrate a significantly increased stabilisation against two modification and degradation enzymes. As it would be useful for the cell to cleave off the protective cap once its purpose is fulfilled, the scientists tested further enzymes and discovered what they were looking for yet again: one of the enzymes was able to remove NAD and thus initiate RNA degradation.

Andres Jäschke’s team suspect the attached NAD to have additional functions. “The nicotinamide adenine dinucleotide interacts with many proteins in a specific manner, so the NAD-RNAs might form protein complexes as well, which, in turn, might regulate various processes in the bacterium. In addition, NAD can occur in the cell in two different forms, namely in an oxidised and in a reduced one. The equilibrium between these two states may influence and modulate the biological function of NAD-RNAs,” Prof. Jäschke explains.

While protective caps at the ends of RNA have been known for decades in higher organisms, this is the first study to report a cap-like – but chemically different – structure in bacteria, according to the scientists. These investigations open up a new research area, as the biological functions and the mechanisms of this new modification now need to be clarified. “We are particularly interested to find out whether these NAD modifications are present in bacteria only or in higher organisms as well,” comments Andres Jäschke. “If this were a phenomenon specific to bacteria, it might provide clues for new antibacterial treatments.”

The research work was supported by fellowships from the Alexander von Humboldt Foundation and the Hartmut Hoffmann-Berling International Graduate School for Molecular and Cellular Biology (HBIGS) of Heidelberg University.

Original Publication:
Cahová, H., Winz, M.-L., Höfer, K., Nübel, K. & Jäschke, A.: NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature (22 December 2014), DOI 10.1038/nature14020

Internet information:
http://www.jaeschke.uni-hd.de

Contact:
Prof. Dr. Andres Jäschke
Institute of Pharmacy und Molecular Biotechnology
Phone +49 6221 54-4853
jaeschke@uni-hd.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>