Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A network for longevity

05.04.2016


Image of a C. elegans roundworm: green fluorescence labels one of the transcription factors

© MPI for Biology of Ageing

An ageing cell goes through major negative changes: defective proteins are not eliminated as they should, mitochondria – the power plants of a cell – do not function properly, the ability to sense nutrients is lost.

All of these defects lead to shortened lifespan. One might think at first glance, they appear to have nothing to do with each other on a molecular level.

“In fact, they are highly interconnected”, says Adam Antebi,Director at the Max Planck Institute for Biology of Ageing in Cologne.

“Now we have found a network of regulators that connects all those different cellular processes.” For their studies the researchers used the roundworm Caenorhabditis elegans, a commonly used model organism in the field of ageing research.

It all began with a scientific finding scientists made already some years ago: Roundworms live much longer if you remove their germ cells – the sperm and egg producing cells. “But we did not know why this happened”, explains Antebi. To answer this question the scientists removed specific genes to test if these worms lost the ability to live long.

If this was the case, the researchers assumed that they found a gene that was normally required to increase the lifespan. In the end the researchers had a list of proteins, which extend lifetime. Many of them belonged to the so-called transcription factors - proteins that reside in the nucleus of the cell to turn on and off other genes.

The detected transcription factors appear to work together. “We found that all these transcription factors regulate and support one another. Actually they behave like a network”, Antebi says.

This network impacts very diverse processes in the worm-cells: the recycling machine, the digestion system and the sensing of nutrients.

“The end-result is changes in metabolism, the process where nutrients become the fuel and building blocks we need”, Antebi explains. With their study the researchers can begin to explain how reproduction, metabolism and life span are intertwined.

Weitere Informationen:

http://www.age.mpg.de/communications/press-pr/press-releases/
http://www.nature.com/ncomms/2016/160322/ncomms10944/full/ncomms10944.html

Dr. Maren Berghoff | Max-Planck-Institut für Biologie des Alterns

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>