Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new mouse could help understand how some lung cancer cells evade drug treatment

10.12.2009
Drug resistant lung cancer cells change their behavior in ways we do not understand to evade treatment, but these events can now be recapitulated and studied in mice
Lung cancer is the leading cause of cancer mortality worldwide and lung adenocarcinoma is the most common type. Many cases of lung adenocarcinoma are attributed to a mutation in a gene for the epidermal growth factor receptor (EGFR).

Lung cancer with changes in EGFR is initially treatable with a family of chemotherapeutic agents called tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib. However, patients often develop resistance to these drugs through the acquisition of additional changes or secondary mutations that allow cancer cells to evade treatment.

Some secondary mutations to the EGFR gene that allow lung cancer cells to survive in the presence of current chemotherapy are known. These secondary changes are now the focus of targeted efforts to create drugs to specifically interfere with the mutated form of the protein. Unfortunately, in 40% of the cases in which patients become resistant to therapy, the molecular events that confer this resistance are not known. Without knowing the changes that sustain the survival of these cells it remains impossible to specifically and effectively target them with anti-cancer drugs.

Scientists now describe a mouse model of lung cancer that develops resistance to TKI drugs in at least some of the same ways that humans do. Lung cancer occurs in these mice due to a mutation in EGFR that is the same as the mutation that underlies many human lung adenocarcinomas. Some of the defined secondary changes to EGFR, which are known to confer drug resistance in humans, also occur in these mice. But most of these drug resistant mice bear tumors that do not contain known mutations. This important similarity to the human situation suggests that this mouse model might help identify the currently unknown mutations that make lung cancer cells resistant to therapy.

Many techniques are now available to unravel the genetic changes that occur in cancer cells. Since these mice recapitulate many of the known mutations that characterize human lung cancer, the hope is that their cells can be screened to identify the currently unknown mutations that promote drug resistance in lung cancer cells. This provides a model to uncover the molecular events responsible for the 40% of patients that become resistant to TKI therapy due to unknown causes. Once novel mechanisms of resistance are identified, these mice might also become valuable preclinical systems to evaluate the efficacy of therapeutics developed to combat drug-resistant disease.

The characterization of mice with drug resistant lung tumors is presented in the Research Report titled 'Erlotinib resistance in mouse models of epidermal growth factor receptor-induced lung adenocarcinoma' and was written by Katerina Politi, Pang-Dian Fan, Ronglai Shen, Maureen Zakowski and Harold Varmus at the Memorial Sloan-Kettering Cancer Center in New York, USA. The study is published in the January/Febuary 2010 issue of the new research journal, Disease Models & Mechanisms (DMM), , published by The Company of Biologists, a non-profit based in Cambridge, UK.

About Disease Models & Mechanisms:

Disease Models & Mechanisms (DMM) is a new research journal, launched in 2008, that publishes primary scientific research, as well as review articles, editorials, and research highlights. The journal's mission is to provide a forum for clinicians and scientists to discuss basic science and clinical research related to human disease, disease detection and novel therapies. DMM is published by the Company of Biologists, a non-profit organization based in Cambridge, UK.

The Company also publishes the international biology research journals Development, Journal of Cell Science, and The Journal of Experimental Biology. In addition to financing these journals, the Company provides grants to scientific societies and supports other activities including travelling fellowships for junior scientists, workshops and conferences. The world's poorest nations receive free and unrestricted access to the Company's journals.

Kristy Kain | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>