Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A mother’s genes can hasten her child’s ageing process

22.08.2013
When we age, our cells change and become damaged. Now, researchers at the Max Planck Institute for Biology of Ageing and Karolinska Institutet have shown that ageing is determined not only by the accumulation of cell damage during our lifetime but also by the genetic material we acquire from our mothers. The results of the study are published in the scientific periodical Nature.

There are many causes of ageing, a process that is determined by an accumulation of various kinds of cell damage that impair the function of bodily organs. Of particular importance to ageing, however, seems to be the damage that occurs in the cell’s power plant – the mitochondrion.

“The mitochondrion contains its own DNA, the so-called mitochondrial DNA or mtDNA, which changes more than the DNA in the nucleus, and this has a significant impact on the ageing process,” says Nils-Göran Larsson, Director at the Max Planck Institute for Biology of Ageing, also a professor in Mitochondrial Genetics at Karolinska Institutet (KI) and leader of the current study alongside Professor Lars Olson (KI). “Many mutations in the mitochondria gradually disable the cell’s energy production.”

Now, however, the researchers have shown that the ageing process is attributable not only to the accumulation of mtDNA damage during a person’s lifetime, but also to their maternally inherited mtDNA.

“Surprisingly, we also show that our mother’s mitochondrial DNA seems to influence our own ageing,” says Professor Larsson. “If we inherit mtDNA with mutations from our mother, we age more quickly.”

Normal and damaged DNA is passed down from generation to generation. However, the question of whether it is possible to affect the degree of mtDNA damage through, for example, lifestyle intervention

is yet to be investigated. All that the researchers know now is that mild mtDNA damage is transferred from the mother and contributes to the ageing process.

They also show in the current study that low levels of mutated mtDNA have developmental effects and may cause deformities of the brain when they are accompanied by large amounts of mtDNA mutations that occur over the lifetime.

“Our findings can shed more light on the ageing process and prove that the mitochondria play a key part in ageing. They also show that it’s important to reduce the number of mutations,” says Professor Larsson.

The data published in the paper come from experiments on mice. The researchers now intend to continue their work on mice, and on fruit flies, to investigate whether reducing the number of mutations can extend their lifespan.

Original publication:
Jaime M. Ross, James B. Stewart, Erik Hagström, Stefan Brené, Arnaud Mourier, Giuseppe Coppotelli, Christoph Freyer, Marie Lagouge, Barry J. Hoffer, Lars Olson, and Nils-Göran Larsson
Germline mitochondrial DNA mutations aggravate ageing and can impair brain development


Nature, Epub ahead of print: Aug 21, 2013, DOI: 10.1038/nature12474

Contact:

Prof. Dr. Nils-Göran Larsson
Max Planck Institute for Biology of Ageing, D-Cologne
Tel: +49 221 478 89 771
Mobile: +46 7020 97 155, +49 (0)171 55 01 448
E-mail: larsson@age.mpg.de
Press & Public Relations:
Sabine Dzuck
Tel.: +49 (0)221 379 70 304
Mobile: +49 (0)151 628 03 539
E-mail: sabine.dzuck@age.mpg.de

Sabine Dzuck | Max-Planck-Institut
Further information:
http://www.age.mpg.de

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>