Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Molecular Toolkit for Gene Silencing

13.12.2013
The team of Johannes Zuber at the IMP in Vienna, Austria, managed to overcome remaining key limitations of RNA interference (RNAi) - a unique method to specifically shut off genes.

By using an optimized design, the scientists were able to inhibit genes with greatly enhanced efficiency and accuracy. The new method facilitates the search for drug targets and improves the interpretation of experimental results.


RNA-interference: small RNA molecules suppress gene expression (artist’s interpretation). IMP

The IMP will make this „RNAi toolkit“ available to researchers. Results of the study are published in the current issue of Cell Reports.

RNA interference (RNAi) is a regulatory mechanism that occurs naturally within cells. Short pieces of RNA (so-called “hairpins”) interfere with transcribed genetic information to silence genes. RNAi was originally discovered in plants in 1990, and in 2001 was also found in mammals. Right from its discovery, RNAi has inspired scientists to utilize the new mechanism for the development of experimental gene suppression tools. Beyond many applications in basic biological research, RNAi has become a unique method to identify and study therapeutic target genes. However, despite their enormous potential, currently available RNAi reagents are often ineffective or come along with unspecific side-effects.

Inspired by nature

Johannes Zuber and his colleague Christof Fellmann came up with ideas how to improve RNAi technology back in 2010, when both were still working at Cold Spring Harbor Laboratory (CSHL) in the US. “The basic principles of RNAi are not yet fully understood. To shut off a specific gene, one has to test many hairpin molecules, and often only one out of ten will be effective enough. To improve the method, we took nature as an example,” Zuber explains their line of thought. He finally took the project to the IMP, while Fellmann continued his scientific career at Mirimus, a CSHL-based biotech company developing advanced RNAi technologies.

A particularly powerful and commonly used RNAi method is based on embedding synthetic hairpin sequences into naturally occurring „micro-RNA backbones“. The result is an RNA-construct that mimics nature and is processed by normal cellular pathways. However, the performance of existing reagents designed this way remains far from perfect.

Zuber and his team analyzed a human micro-RNA backbone, focusing on sequence parts that remained unchanged during evolution – a sign that they may have important functions. The scientists realized that some of these sequences had been altered in the commonly used synthetic RNAi backbone. By correcting these differences and systematically testing many design variants, Zuber and his team managed to greatly improve the effectiveness of the synthetic RNAi tool.

Upgrade from a Beetle to a Lamborghini

“The benefit for science is tremendous” Zuber points out the relevance of his results. While current methods involve testing up to twenty hairpins to strongly suppress a given gene, the optimized reagents cut down the number to an average of four. Moreover, in high-throughput screening studies it will be easier to nominate positive hits and interpret negative results.

“We are taking the technology from a molecular Beetle to a Lamborghini” Zuber draws an analogy. “The upgrade is simple and existing reagents can be adapted with minimal effort.” Zuber and his co-workers at the IMP provide the new method and reagents - an “entire toolbox for effective RNAi”, as he calls it - to the scientific community. Cooperation partners and colleagues at the IMP who have already tested these new reagents are fully convinced of the benefits.

Improvement for the search of new drugs

In the future, Zuber’s study will allow a better exploitation of the potential of RNAi in cancer research. Despite tremendous efforts, pharmaceutical companies have not yet managed to develop RNAi as a drug in humans. However, large-scale “RNAi screens” represent a unique procedure to find and test the most promising target genes for new drugs before launching the slow and expensive process of developing a new drug. The optimized RNAi reagents are especially useful for such high-throughput screens, as more genes can be tested simultaneously with higher efficiency and precision. And, most importantly, introduction of the optimized RNAi tools will reduce the risk of missing promising targets for future therapeutic use.

Original Publication
C. Fellmann, T. Hoffmann, V. Sridhar, B. Hopfgartner, M. Muhar, M. Roth, DY Lai, IAM Barbosa, JS Kwon, Y. Guan and J. Zuber: An optimized microRNA backbone for effective single-copy RNAi. Cell Reports 5: 1-10, December 16, 2013. http://dx.doi.org/10.1016/j.celrep.2013.11.020
Illustration
An illustration can be downloaded from the IMP Website and used free of charge in connection with this press release: http://www.imp.ac.at/pressefoto-RNAi
About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 30 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.
About Johannes Zuber
Johannes Zuber is a Group Leader at the Research Institute of Molecular Pathology (IMP) in Vienna where he founded his own lab in 2011. Following his Medicine studies at the Humboldt University in Berlin and a thesis in basic cancer research, he did a four year clinical residency at the Department of Hematology and Oncology at the Charité University Hospital in Berlin, where acute leukemias became the focus of his clinical work and scientific interest. In 2005, he joined Scott Lowe’s lab at Cold Spring Harbor Laboratory (CSHL) as a postdoc, where in 2009 he became the CSHL Clinical Research Fellow. His scientific work focuses on the development and use of innovative RNAi technologies and cancer mouse models to systematically explore therapeutic targets in leukemias and other cancers. His most recent contributions to the discovery of BRD4 as new therapeutic target have been selected by Nature medicine as “Notable Advance in Cancer Research 2011”
About Christof Fellmann
Christof Fellmann is Chief Scientific Officer at Mirimus Inc., a Biotechnology Company developing advanced RNAi reagents for accelerated drug development. Following undergraduate training in Molecular Biology at the University of Basel, he received a Masters degree from the Ecole Supérieure de Biotechnologie Strasbourg. In 2007 he joined the laboratory of Scott Lowe at Cold Spring Harbor Laboratory (CSHL) as a PhD student, where he established a high-throughput “Sensor” assay for the functional optimization of RNAi triggers for large-scale loss-of-function screens and RNAi-based mouse models of human disease. While obtaining his doctorate from the University of Zurich, he co-founded Mirimus Inc. in 2010 to make optimized RNAi reagents available to the broader research community.
Press Contact
Dr. Heidemarie Hurtl
Communications Manager
IMP - Research Institute of Molecular Pathology
Dr. Bohr-Gasse 7
1030 Vienna, Austria
phone +43 (0)1 79730-3625
mobile: +43 (0)664 8247910
E-mail: hurtl@imp.ac.at
Scientific Contact:
zuber@imp.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at/news/press-releases/press-release/press-release-a-molecular-toolkit-for-gene-silencing/

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>