Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Molecular Toolkit for Gene Silencing

The team of Johannes Zuber at the IMP in Vienna, Austria, managed to overcome remaining key limitations of RNA interference (RNAi) - a unique method to specifically shut off genes.

By using an optimized design, the scientists were able to inhibit genes with greatly enhanced efficiency and accuracy. The new method facilitates the search for drug targets and improves the interpretation of experimental results.

RNA-interference: small RNA molecules suppress gene expression (artist’s interpretation). IMP

The IMP will make this „RNAi toolkit“ available to researchers. Results of the study are published in the current issue of Cell Reports.

RNA interference (RNAi) is a regulatory mechanism that occurs naturally within cells. Short pieces of RNA (so-called “hairpins”) interfere with transcribed genetic information to silence genes. RNAi was originally discovered in plants in 1990, and in 2001 was also found in mammals. Right from its discovery, RNAi has inspired scientists to utilize the new mechanism for the development of experimental gene suppression tools. Beyond many applications in basic biological research, RNAi has become a unique method to identify and study therapeutic target genes. However, despite their enormous potential, currently available RNAi reagents are often ineffective or come along with unspecific side-effects.

Inspired by nature

Johannes Zuber and his colleague Christof Fellmann came up with ideas how to improve RNAi technology back in 2010, when both were still working at Cold Spring Harbor Laboratory (CSHL) in the US. “The basic principles of RNAi are not yet fully understood. To shut off a specific gene, one has to test many hairpin molecules, and often only one out of ten will be effective enough. To improve the method, we took nature as an example,” Zuber explains their line of thought. He finally took the project to the IMP, while Fellmann continued his scientific career at Mirimus, a CSHL-based biotech company developing advanced RNAi technologies.

A particularly powerful and commonly used RNAi method is based on embedding synthetic hairpin sequences into naturally occurring „micro-RNA backbones“. The result is an RNA-construct that mimics nature and is processed by normal cellular pathways. However, the performance of existing reagents designed this way remains far from perfect.

Zuber and his team analyzed a human micro-RNA backbone, focusing on sequence parts that remained unchanged during evolution – a sign that they may have important functions. The scientists realized that some of these sequences had been altered in the commonly used synthetic RNAi backbone. By correcting these differences and systematically testing many design variants, Zuber and his team managed to greatly improve the effectiveness of the synthetic RNAi tool.

Upgrade from a Beetle to a Lamborghini

“The benefit for science is tremendous” Zuber points out the relevance of his results. While current methods involve testing up to twenty hairpins to strongly suppress a given gene, the optimized reagents cut down the number to an average of four. Moreover, in high-throughput screening studies it will be easier to nominate positive hits and interpret negative results.

“We are taking the technology from a molecular Beetle to a Lamborghini” Zuber draws an analogy. “The upgrade is simple and existing reagents can be adapted with minimal effort.” Zuber and his co-workers at the IMP provide the new method and reagents - an “entire toolbox for effective RNAi”, as he calls it - to the scientific community. Cooperation partners and colleagues at the IMP who have already tested these new reagents are fully convinced of the benefits.

Improvement for the search of new drugs

In the future, Zuber’s study will allow a better exploitation of the potential of RNAi in cancer research. Despite tremendous efforts, pharmaceutical companies have not yet managed to develop RNAi as a drug in humans. However, large-scale “RNAi screens” represent a unique procedure to find and test the most promising target genes for new drugs before launching the slow and expensive process of developing a new drug. The optimized RNAi reagents are especially useful for such high-throughput screens, as more genes can be tested simultaneously with higher efficiency and precision. And, most importantly, introduction of the optimized RNAi tools will reduce the risk of missing promising targets for future therapeutic use.

Original Publication
C. Fellmann, T. Hoffmann, V. Sridhar, B. Hopfgartner, M. Muhar, M. Roth, DY Lai, IAM Barbosa, JS Kwon, Y. Guan and J. Zuber: An optimized microRNA backbone for effective single-copy RNAi. Cell Reports 5: 1-10, December 16, 2013.
An illustration can be downloaded from the IMP Website and used free of charge in connection with this press release:
About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 30 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.
About Johannes Zuber
Johannes Zuber is a Group Leader at the Research Institute of Molecular Pathology (IMP) in Vienna where he founded his own lab in 2011. Following his Medicine studies at the Humboldt University in Berlin and a thesis in basic cancer research, he did a four year clinical residency at the Department of Hematology and Oncology at the Charité University Hospital in Berlin, where acute leukemias became the focus of his clinical work and scientific interest. In 2005, he joined Scott Lowe’s lab at Cold Spring Harbor Laboratory (CSHL) as a postdoc, where in 2009 he became the CSHL Clinical Research Fellow. His scientific work focuses on the development and use of innovative RNAi technologies and cancer mouse models to systematically explore therapeutic targets in leukemias and other cancers. His most recent contributions to the discovery of BRD4 as new therapeutic target have been selected by Nature medicine as “Notable Advance in Cancer Research 2011”
About Christof Fellmann
Christof Fellmann is Chief Scientific Officer at Mirimus Inc., a Biotechnology Company developing advanced RNAi reagents for accelerated drug development. Following undergraduate training in Molecular Biology at the University of Basel, he received a Masters degree from the Ecole Supérieure de Biotechnologie Strasbourg. In 2007 he joined the laboratory of Scott Lowe at Cold Spring Harbor Laboratory (CSHL) as a PhD student, where he established a high-throughput “Sensor” assay for the functional optimization of RNAi triggers for large-scale loss-of-function screens and RNAi-based mouse models of human disease. While obtaining his doctorate from the University of Zurich, he co-founded Mirimus Inc. in 2010 to make optimized RNAi reagents available to the broader research community.
Press Contact
Dr. Heidemarie Hurtl
Communications Manager
IMP - Research Institute of Molecular Pathology
Dr. Bohr-Gasse 7
1030 Vienna, Austria
phone +43 (0)1 79730-3625
mobile: +43 (0)664 8247910
Scientific Contact:

Dr. Heidemarie Hurtl | idw
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>