Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A molecular switch for memory and addiction

26.11.2010
Scientists from Germany, UK and Italy identify a molecular switch that leads to a sustained increase of calcium in nerve cells and plays a crucial role in the formation of memory and addictive behaviors.

Learning and memory formation are based on the creation of new connections between neurons in the brain. Also, behaviors such as nicotine addiction manifest themselves in long-term changes of neuronal connectivity and can – at least in this respect – be viewed as a form of learning.

A team around Pierluigi Nicotera, scientific director of the German Center for Neurodegenerative Diseases (DZNE) and collaborating laboratories at the MRC, UK and University of Modena, Italy have now discovered a molecular switch that plays a crucial role in establishing addictive behavior and memory processes. These results may contribute to new strategies for preventing memory loss or treating addictive behavior. The study is published online in EMBO Journal on November 26th.

Neuronal signals are passed from one nerve cell to the next in form of chemical compounds called neurotransmitters. This signal transmission is a first step and prerequisite for any learning process in the brain. It induces a sequence of events in the downstream cell that eventually lead to changes in neuronal connectivity and thus to memory consolidation. Also nicotine or cocaine can trigger the rearrangement of brain connections in an equivalent manner.

A first step in the induction of neuronal plasticity – the formation of new connections in the brain – involves calcium. As a response to neurotransmitters, nicotine or cocaine, calcium increases at the site of neuronal connection, the synapse. In a second step, this calcium increase will induce gene expression – the synthesis of proteins that will lead to new or reinforced synaptic connectivity. It has been generally accepted that the increase of calcium is only part of the first step in this process and does not depend on gene expression. Pierluigi Nicotera and his colleagues now challenge this idea. Their study shows that the expression of genes involved in calcium signaling is required to induce plasticity in nerve cells after repeated stimulation with nicotine or cocaine.

The scientists found that nicotine administration to mice induces the expression of a gene called type 2 ryanodine receptor (RyR2). RyR2 protein is involved in releasing calcium from a cell internal calcium store, the endoplasmic reticulum, thus leading to a long-lasting reinforcement of calcium signaling in a self-sustained manner. This sustained calcium-increase then leads to neuronal plasticity. Specifically, RyR2 is expressed in a number of brain areas associated with cognition and addiction as the cortex and ventral midbrain, suggesting that RyR2 induction plays a pivotal role in these processes. This idea was confirmed in an additional experiment, in which the authors of the study demonstrate that a reduction of RyR2-activation in living animals abolishes behavior associated with learning, memory and addiction. This shows that RyR2 is absolutely required to develop long-term changes in the brain that lead to addiction.

These results are a major step forwards in understanding the molecular processes underlying memory and addiction. On the long run, the scientists hope that these insights will contribute to the development of therapies for the treatment of addictive disorders or strategies to counteract memory loss in neurodegenerative diseases like Alzheimer’s disease.

Original publication:
Elena Ziviani, Giordano Lippi, Daniele Bano, Eliana Munarriz, Stefania Guiducci, Michele Zoli, Kenneth W Young and Pierluigi Nicotera. Ryanodine receptor-2 upregulation and nicotine-mediated plasticity. EMBO Journal, published online on 26th November 2010.

doi: EMBOJ.2010.279

Contact:
Prof. Pierluigi Nicotera
German Center for Neurodegenerative Diseases (DZNE)
Ludwig-Erhard-Allee 2
53175 Bonn, Germany
Phone: + 49 228 43302-100
Email: pierluigi.nicotera@dzne.de
Dr. Katrin Weigmann
German Center for Neurodegenerative Diseases (DZNE)
Press and Public Relations
Phone: +49 228 43302 -263
Mobile: +49 172 2838930
Email: katrin.weigmann@dzne.de

Daniel Bayer | idw
Further information:
http://www.dzne.de

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>