Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Mix of Tiny Gold and Viral Particles – and the DNA Ties that Bind Them

28.01.2011
Scientists have created a diamond-like lattice composed of gold nanoparticles and viral particles, woven together and held in place by strands of DNA. The structure – a distinctive mix of hard, metallic nanoparticles and organic viral pieces known as capsids, linked by the very stuff of life, DNA – marks a remarkable step in scientists’ ability to combine an assortment of materials to create infinitesimal devices.

The research, done by scientists at the University of Rochester Medical Center, Scripps Research Institute, and Massachusetts Institute of Technology, was published recently in Nature Materials.

While people commonly think of DNA as a blueprint for life, the team used DNA instead as a tool to guide the precise positioning of tiny particles just one-millionth of a centimeter across, using DNA to chaperone the particles.

Sung Yong Park, Ph.D.Central to the work is the unique attraction of each of DNA’s four chemical bases to just one other base. The scientists created specific pieces of DNA and then attached them to gold nanoparticles and viral particles, choosing the sequences and positioning them exactly to force the particles to arrange themselves into a crystal lattice.

When scientists mixed the particles, out of the brew emerged a sodium thallium crystal lattice. The device “self assembled” or literally built itself.

The research adds some welcome flexibility to the toolkit that scientists have available to create nano-sized devices.

“Organic materials interact in ways very different from metal nanoparticles. The fact that we were able to make such different materials work together and be compatible in a single structure demonstrates some new opportunities for building nano-sized devices,” said Sung Yong Park, Ph.D., a research assistant professor of Biostatistics and Computational Biology at Rochester.

Park and M.G Finn, Ph.D., of Scripps Research Institute are corresponding authors of the paper.

Such a crystal lattice is potentially a central ingredient to a device known as a photonic crystal, which can manipulate light very precisely, blocking certain colors or wavelengths of light while letting other colors pass. While 3-D photonic crystals exist that can bend light at longer wavelengths, such as the infrared, this lattice is capable of manipulating visible light. Scientists foresee many applications for such crystals, such as optical computing and telecommunications, but manufacturing and durability remain serious challenges.

It was three years ago that Park, as part of a larger team of colleagues at Northwestern University, first produced a crystal lattice with a similar method, using DNA to link gold nanospheres. The new work is the first to combine particles with such different properties – hard gold nanoparticles and more flexible organic particles.

Within the new structure, there are actually two distinct forces at work, Park said. The gold particles and the viral particles repel each other, but their deterrence is countered by the attraction between the strategically placed complementary strands of DNA. Both phenomena play a role in creating the rigid crystal lattice. It’s a little bit like how countering forces keep our curtains up: A spring in a curtain rod pushes the rod to lengthen, while brackets on the window frame counter that force, creating a taut, rigid device.

Other authors of the paper include Abigail Lytton-Jean, Ph.D., of MIT, Daniel Anderson, Ph.D., of Harvard and MIT, and Petr Cigler, Ph.D., formerly of Scripps Research Institute and now at the Academy of Sciences of the Czech Republic. Park’s work was supported by the National Institute of Allergy and Infectious Diseases.

For Media Inquiries:
Tom Rickey
(585) 275-7954
Email Tom Rickey

Tom Rickey | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>