Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A microRNA Prognostic Marker Identified In Acute Leukemia

15.05.2012
Molecular markers are needed to guide the treatment of people with acute leukemia with normal-looking chromosomes.

This study found that overexpression of a particular microRNA indicates a poor prognosis in these patients.

The findings might lead to better identification of patients needing aggressive therapy for acute leukemia.

A study has identified microRNA-3151 as a new independent prognostic marker in certain patients with acute leukemia. The study involves patients with acute myeloid leukemia and normal-looking chromosomes(CN-AML).

The study by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) found that when microRNA-3151 (miR-3151) is overexpressed in CN-AML, the disease responds poorly to treatment and patients experience shorter remissions and survival periods. This effect is independent of other gene mutations that may be present in the cells.

Additionally, miR-3151 is encoded within a gene called BAALC, which itself is an independent marker of poor survival when overexpressed in CN-AML.

The findings, published online in the journal Blood (and as a Plenary paper which represents the top 1 to 5 percent of papers published in the print edition of Blood), provide new insights into the nature of AML and might in the future help determine the best therapy for individual patients and further personalize AML therapy.

“Patients with high levels of both miR-3151 and BAALC had the poorest outcome compared with those showing high expression of either miR-3151 or BAALC alone, or those expressing low levels of both,” says principal investigator Dr. Clara D. Bloomfield, a Distinguished University Professor at Ohio State and cancer scholar and senior advisor to the OSUCCC – James. “This suggests that miR-3151 and BAALC may act through different mechanisms to enhance poor outcome of CN-AML patients.”

The study involved 179 patients aged 60 years or older with CN-AML who were treated on Cancer and Leukemia Group B (CALGB) clinical trials.

MicroRNAs are small molecules that cells use to help regulate the kinds and amount of proteins they make. About one-third of human microRNAs are encoded within host genes. Specifically, they are located in the portions of genes called introns, short stretches of DNA that are not used when genetic information is translated to make a protein.

“Very little is known about the regulation of microRNAs located within introns, and especially about their possible interactions with their host genes,” says first author Dr. Ann-Kathrin Eisfeld, a post-doctoral researcher who works in the laboratory of study co-author Dr. Albert de la Chapelle and Bloomfield.

“This is the first description of interplay of an oncogene and its intronic, and possibly oncogenic, microRNA,” Eisfeld says. “It may be the first of other important intronic microRNAs in leukemia and perhaps other malignancies.”

Funding from the National Cancer Institute, the Coleman Leukemia Research Foundation, the Deutsche Krebshilfe–Dr Mildred Scheel Cancer Foundation, the Pelotonia Fellowship Program and the Conquer Cancer Foundation supported this research.

Other researchers involved in this study were Guido Marcucci, Kati Maharry, Sebastian Schwind, Michael D. Radmacher, Deedra Nicolet, Heiko Becker, Krzysztof Mrózek, Susan P. Whitman, Klaus H. Metzeler, Jason H. Mendler, Yue-Zhong Wu, Sandya Liyanarachchi, Ravi Patel, Michael A. Caligiuri, Stephan M. Tanner, and Albert de la Chapelle at The Ohio State University; Maria R. Baer at University of Maryland; Bayard L. Powell at Wake Forest University; Thomas H. Carter at University of Iowa; Joseph O. Moore at Duke University; Jonathan E. Kolitz at Hofstra North Shore-Long Island Jewish School of Medicine; Meir Wetzler at Roswell Park Cancer Institute; and Richard A. Larson at University of Chicago Medical Center.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only seven centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State’s cancer program as “exceptional,” the highest rating given by NCI survey teams. As the cancer program’s 210-bed adult patient-care component, The James is a “Top Hospital” as named by the Leapfrog Group and one of the top 20 cancer hospitals in the nation as ranked by
U.S.News & World Report.

Contact: Darrell E. Ward, Medical Center Public Affairs and Media Relations,
614-293-3737, or Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>