Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A microRNA Prognostic Marker Identified In Acute Leukemia

15.05.2012
Molecular markers are needed to guide the treatment of people with acute leukemia with normal-looking chromosomes.

This study found that overexpression of a particular microRNA indicates a poor prognosis in these patients.

The findings might lead to better identification of patients needing aggressive therapy for acute leukemia.

A study has identified microRNA-3151 as a new independent prognostic marker in certain patients with acute leukemia. The study involves patients with acute myeloid leukemia and normal-looking chromosomes(CN-AML).

The study by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) found that when microRNA-3151 (miR-3151) is overexpressed in CN-AML, the disease responds poorly to treatment and patients experience shorter remissions and survival periods. This effect is independent of other gene mutations that may be present in the cells.

Additionally, miR-3151 is encoded within a gene called BAALC, which itself is an independent marker of poor survival when overexpressed in CN-AML.

The findings, published online in the journal Blood (and as a Plenary paper which represents the top 1 to 5 percent of papers published in the print edition of Blood), provide new insights into the nature of AML and might in the future help determine the best therapy for individual patients and further personalize AML therapy.

“Patients with high levels of both miR-3151 and BAALC had the poorest outcome compared with those showing high expression of either miR-3151 or BAALC alone, or those expressing low levels of both,” says principal investigator Dr. Clara D. Bloomfield, a Distinguished University Professor at Ohio State and cancer scholar and senior advisor to the OSUCCC – James. “This suggests that miR-3151 and BAALC may act through different mechanisms to enhance poor outcome of CN-AML patients.”

The study involved 179 patients aged 60 years or older with CN-AML who were treated on Cancer and Leukemia Group B (CALGB) clinical trials.

MicroRNAs are small molecules that cells use to help regulate the kinds and amount of proteins they make. About one-third of human microRNAs are encoded within host genes. Specifically, they are located in the portions of genes called introns, short stretches of DNA that are not used when genetic information is translated to make a protein.

“Very little is known about the regulation of microRNAs located within introns, and especially about their possible interactions with their host genes,” says first author Dr. Ann-Kathrin Eisfeld, a post-doctoral researcher who works in the laboratory of study co-author Dr. Albert de la Chapelle and Bloomfield.

“This is the first description of interplay of an oncogene and its intronic, and possibly oncogenic, microRNA,” Eisfeld says. “It may be the first of other important intronic microRNAs in leukemia and perhaps other malignancies.”

Funding from the National Cancer Institute, the Coleman Leukemia Research Foundation, the Deutsche Krebshilfe–Dr Mildred Scheel Cancer Foundation, the Pelotonia Fellowship Program and the Conquer Cancer Foundation supported this research.

Other researchers involved in this study were Guido Marcucci, Kati Maharry, Sebastian Schwind, Michael D. Radmacher, Deedra Nicolet, Heiko Becker, Krzysztof Mrózek, Susan P. Whitman, Klaus H. Metzeler, Jason H. Mendler, Yue-Zhong Wu, Sandya Liyanarachchi, Ravi Patel, Michael A. Caligiuri, Stephan M. Tanner, and Albert de la Chapelle at The Ohio State University; Maria R. Baer at University of Maryland; Bayard L. Powell at Wake Forest University; Thomas H. Carter at University of Iowa; Joseph O. Moore at Duke University; Jonathan E. Kolitz at Hofstra North Shore-Long Island Jewish School of Medicine; Meir Wetzler at Roswell Park Cancer Institute; and Richard A. Larson at University of Chicago Medical Center.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only seven centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State’s cancer program as “exceptional,” the highest rating given by NCI survey teams. As the cancer program’s 210-bed adult patient-care component, The James is a “Top Hospital” as named by the Leapfrog Group and one of the top 20 cancer hospitals in the nation as ranked by
U.S.News & World Report.

Contact: Darrell E. Ward, Medical Center Public Affairs and Media Relations,
614-293-3737, or Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>