Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A microRNA Prognostic Marker Identified In Acute Leukemia

15.05.2012
Molecular markers are needed to guide the treatment of people with acute leukemia with normal-looking chromosomes.

This study found that overexpression of a particular microRNA indicates a poor prognosis in these patients.

The findings might lead to better identification of patients needing aggressive therapy for acute leukemia.

A study has identified microRNA-3151 as a new independent prognostic marker in certain patients with acute leukemia. The study involves patients with acute myeloid leukemia and normal-looking chromosomes(CN-AML).

The study by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) found that when microRNA-3151 (miR-3151) is overexpressed in CN-AML, the disease responds poorly to treatment and patients experience shorter remissions and survival periods. This effect is independent of other gene mutations that may be present in the cells.

Additionally, miR-3151 is encoded within a gene called BAALC, which itself is an independent marker of poor survival when overexpressed in CN-AML.

The findings, published online in the journal Blood (and as a Plenary paper which represents the top 1 to 5 percent of papers published in the print edition of Blood), provide new insights into the nature of AML and might in the future help determine the best therapy for individual patients and further personalize AML therapy.

“Patients with high levels of both miR-3151 and BAALC had the poorest outcome compared with those showing high expression of either miR-3151 or BAALC alone, or those expressing low levels of both,” says principal investigator Dr. Clara D. Bloomfield, a Distinguished University Professor at Ohio State and cancer scholar and senior advisor to the OSUCCC – James. “This suggests that miR-3151 and BAALC may act through different mechanisms to enhance poor outcome of CN-AML patients.”

The study involved 179 patients aged 60 years or older with CN-AML who were treated on Cancer and Leukemia Group B (CALGB) clinical trials.

MicroRNAs are small molecules that cells use to help regulate the kinds and amount of proteins they make. About one-third of human microRNAs are encoded within host genes. Specifically, they are located in the portions of genes called introns, short stretches of DNA that are not used when genetic information is translated to make a protein.

“Very little is known about the regulation of microRNAs located within introns, and especially about their possible interactions with their host genes,” says first author Dr. Ann-Kathrin Eisfeld, a post-doctoral researcher who works in the laboratory of study co-author Dr. Albert de la Chapelle and Bloomfield.

“This is the first description of interplay of an oncogene and its intronic, and possibly oncogenic, microRNA,” Eisfeld says. “It may be the first of other important intronic microRNAs in leukemia and perhaps other malignancies.”

Funding from the National Cancer Institute, the Coleman Leukemia Research Foundation, the Deutsche Krebshilfe–Dr Mildred Scheel Cancer Foundation, the Pelotonia Fellowship Program and the Conquer Cancer Foundation supported this research.

Other researchers involved in this study were Guido Marcucci, Kati Maharry, Sebastian Schwind, Michael D. Radmacher, Deedra Nicolet, Heiko Becker, Krzysztof Mrózek, Susan P. Whitman, Klaus H. Metzeler, Jason H. Mendler, Yue-Zhong Wu, Sandya Liyanarachchi, Ravi Patel, Michael A. Caligiuri, Stephan M. Tanner, and Albert de la Chapelle at The Ohio State University; Maria R. Baer at University of Maryland; Bayard L. Powell at Wake Forest University; Thomas H. Carter at University of Iowa; Joseph O. Moore at Duke University; Jonathan E. Kolitz at Hofstra North Shore-Long Island Jewish School of Medicine; Meir Wetzler at Roswell Park Cancer Institute; and Richard A. Larson at University of Chicago Medical Center.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only seven centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State’s cancer program as “exceptional,” the highest rating given by NCI survey teams. As the cancer program’s 210-bed adult patient-care component, The James is a “Top Hospital” as named by the Leapfrog Group and one of the top 20 cancer hospitals in the nation as ranked by
U.S.News & World Report.

Contact: Darrell E. Ward, Medical Center Public Affairs and Media Relations,
614-293-3737, or Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>