Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new method for developing safer drugs

10.05.2010
Amodiaquine was introduced as an antimalarial drug, but was withdrawn when serious adverse effects were observed. Scientists at the University of Gothenburg, Sweden, have now developed a method that can be used to develop safer drugs.

A pharmaceutical in the body is, in the optimal case, broken down into harmless products (metabolites) that leave the body, for example via the urine. Some pharmaceuticals, however, can be converted into toxic products, which may result in serious adverse effects.

A research collaboration between the University of Gothenburg and AstraZeneca has resulted in a method that can facilitate the process of developing safe drugs.

Scientist Tove Johansson Mali’n presents in her thesis a method in which various chemical systems are used to simulate the metabolism of pharmaceuticals in the body. She has been able to use the method to identify and characterise several potentially toxic products that arise as the metabolites of drugs.

One example is the drug amodiaquine. This was introduced as an antimalarial drug, but was withdrawn from the market when it became clear that the drug caused serious adverse effects in the form of liver damage and impaired immune system. Amodiaquine today is mainly used in the acute phase of malaria, mainly in Africa, where resistance to other antimalarial drugs is widespread. Tove Johansson Mali’n has now managed to identify, with the aid of the method, previously unknown metabolites that may have caused, or contributed to, the adverse effects of amodiaquine.

Tove Johansson Mali’n describes the results in her doctoral thesis. The work has been performed in collaboration with the pharmaceuticals company AstraZeneca and is already attracting international attention. Tove Johansson Mali’n has been invited to Salt Lake City, USA at the end of May in order to present her results at an international conference arranged by the American Society for Mass Spectrometry, with 7,000 participants.

“We hope that the method can simplify the work of identifying potentially toxic metabolites at an early stage, and thus facilitate the development of safe drugs”, says Tove Johansson Mali’n.

Link to the thesis: http://gupea.ub.gu.se/handle/2077/22031

Contact:
Tove Johansson Mali’n, PdD, Department of Chemistry, University of Gothenburg
tovjoh@chem.gu.se
tove.johansson.malin@astrazeneca.com
Tel: +46 31 706 5006
Mobile: +46 739 693619

Helena Aaberg | idw
Further information:
http://gupea.ub.gu.se/handle/2077/22031

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>