Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Become a Marathon Runner with the Protein PGC-1α

14.05.2013
Even with a greater muscle mass, a sprinter cannot win a marathon. His specially-trained and strengthened muscles will fatigue faster than the endurance-trained muscles of a long distance runner.

The research group of Prof. Christoph Handschin of the Biozentrum, University of Basel, shows that during endurance exercise the protein PGC-1α shifts the metabolic profile in the muscle. The results are published in the current issue of the journal PNAS.

Marathon runners complete a special training program to improve their endurance capacity. Accordingly, their muscles are able to sustain the provision of energy using aerobic, hence oxygen consuming processes. Untrained athletes and also bodybuilders reach however, in a much earlier stage, a condition where their muscles produce energy without oxygen. This results in the production of lactate in the muscles. At the same time, the muscles begin to fatigue and the legs become heavy.

Less Lactate with Endurance Training

The reason for this difference: the muscles switch their metabolism during endurance training. Importantly, amongst others, the production of the protein PGC-1α is stimulated. Mice with a permanently increased PGC-1α develop the same high endurance muscles as those in trained athletes. Handschin and his team were able to show in these mice that PGC-1α prevents the formation and accumulation of lactate in the muscles.
For this, the researchers trained the mice for an hour on the treadmill. After a few minutes, the lactic acid rates increased in the untrained mice, followed by performance degradation and exhaustion. Mice with a high PGC-1α, however, maintained their performance levels until the end of the training. Their lactate levels remained low despite a high training load. "As it turned out," said Handschin, "PGC-1α changed the composition of an enzyme complex. This reduced the formation of lactate. Also, the remaining lactate in the muscle is converted and used immediately as energy substrate."

Sport Therapy for Diabetics

Also in human skeletal muscle, PGC-1α controls the balance between the formation and degradation of lactate. Disturbances in lactate metabolism are common in obese and diabetic patients. The stimulation of PGC-1α production by endurance exercise activity is therefore an important approach to improve the metabolism in these patients. This could help prevent the resulting damage and progressive physical limitations to the body caused by metabolic diseases.

Publication Details

Serge Summermatter, Gesa Santos, Joaquín Pérez-Schindler, and Christoph Handschin (2013). Skeletal muscle PGC-1α controls whole-body lactate homeostasis through estrogen-related receptor α-dependent activation of LDH B and repression of LDH A. Proceedings of the National Academy of Sciences of the United States of America (PNAS), Published online May 6, 2013.

Further Information

Prof. Christoph Handschin, Biozentrum der Universität Basel, Wachstum und Entwicklung, Klingelbergstrasse 50/70, 4056 Basel, Tel.: +41 61 267 23 78, E-Mail: christoph.handschin@unibas.ch
Weitere Informationen:
Link to abstract: http://www.pnas.org/content/early/2013/05/01/1212976110.abstract
Link to Handschin Research Group:
http://www.biozentrum.unibas.ch/nc/research/groups-platforms/eigene-seiten/unit/handschin/?tx_x4epersdb_pi5%5BshowContentPid%5D=281
Link to original press release:
http://ow.ly/l0XVb

Anne Zimmermann | Universität Basel
Further information:
http://www.unibas.ch

Further reports about: Basel Biozentrum LDH Marathon PGC-1â PNAS Protein Runner oxygen consuming processes

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>