Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Become a Marathon Runner with the Protein PGC-1α

14.05.2013
Even with a greater muscle mass, a sprinter cannot win a marathon. His specially-trained and strengthened muscles will fatigue faster than the endurance-trained muscles of a long distance runner.

The research group of Prof. Christoph Handschin of the Biozentrum, University of Basel, shows that during endurance exercise the protein PGC-1α shifts the metabolic profile in the muscle. The results are published in the current issue of the journal PNAS.

Marathon runners complete a special training program to improve their endurance capacity. Accordingly, their muscles are able to sustain the provision of energy using aerobic, hence oxygen consuming processes. Untrained athletes and also bodybuilders reach however, in a much earlier stage, a condition where their muscles produce energy without oxygen. This results in the production of lactate in the muscles. At the same time, the muscles begin to fatigue and the legs become heavy.

Less Lactate with Endurance Training

The reason for this difference: the muscles switch their metabolism during endurance training. Importantly, amongst others, the production of the protein PGC-1α is stimulated. Mice with a permanently increased PGC-1α develop the same high endurance muscles as those in trained athletes. Handschin and his team were able to show in these mice that PGC-1α prevents the formation and accumulation of lactate in the muscles.
For this, the researchers trained the mice for an hour on the treadmill. After a few minutes, the lactic acid rates increased in the untrained mice, followed by performance degradation and exhaustion. Mice with a high PGC-1α, however, maintained their performance levels until the end of the training. Their lactate levels remained low despite a high training load. "As it turned out," said Handschin, "PGC-1α changed the composition of an enzyme complex. This reduced the formation of lactate. Also, the remaining lactate in the muscle is converted and used immediately as energy substrate."

Sport Therapy for Diabetics

Also in human skeletal muscle, PGC-1α controls the balance between the formation and degradation of lactate. Disturbances in lactate metabolism are common in obese and diabetic patients. The stimulation of PGC-1α production by endurance exercise activity is therefore an important approach to improve the metabolism in these patients. This could help prevent the resulting damage and progressive physical limitations to the body caused by metabolic diseases.

Publication Details

Serge Summermatter, Gesa Santos, Joaquín Pérez-Schindler, and Christoph Handschin (2013). Skeletal muscle PGC-1α controls whole-body lactate homeostasis through estrogen-related receptor α-dependent activation of LDH B and repression of LDH A. Proceedings of the National Academy of Sciences of the United States of America (PNAS), Published online May 6, 2013.

Further Information

Prof. Christoph Handschin, Biozentrum der Universität Basel, Wachstum und Entwicklung, Klingelbergstrasse 50/70, 4056 Basel, Tel.: +41 61 267 23 78, E-Mail: christoph.handschin@unibas.ch
Weitere Informationen:
Link to abstract: http://www.pnas.org/content/early/2013/05/01/1212976110.abstract
Link to Handschin Research Group:
http://www.biozentrum.unibas.ch/nc/research/groups-platforms/eigene-seiten/unit/handschin/?tx_x4epersdb_pi5%5BshowContentPid%5D=281
Link to original press release:
http://ow.ly/l0XVb

Anne Zimmermann | Universität Basel
Further information:
http://www.unibas.ch

Further reports about: Basel Biozentrum LDH Marathon PGC-1â PNAS Protein Runner oxygen consuming processes

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>