Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Little Magic Provides an Atomic-level Look at Bone

04.12.2009
A new study using solid-state NMR spectroscopy to analyze intact bone paves the way for atomic-level explorations of how disease and aging affect bone.

The research by scientists at the University of Michigan is reported in the Dec. 2 issue of the Journal of the American Chemical Society.

"If people think of bone at all---and they usually don't, until they have a fracture---they think of it as an inert material," said Ayyalusamy Ramamoorthy, professor of chemistry and of biophysics. "But like everything else, bone is also made up of molecules whose behavior is reflected in its structure, toughness and mechanical strength, making bone really exciting in terms of its chemistry and its contribution to health and well-being,"

As scientists strive to understand the human body and its diseases in terms of molecular behavior, bone presents a challenge to most analytical techniques. "However, solid-state NMR spectroscopy is an ideal tool for exploring what goes on inside bone at nanoscopic resolution," Ramamoorthy said. "It is possible to probe the structure and dynamics of individual molecules that constitute bone without any physical damage or chemical modification."

But while solid-state NMR spectroscopy is capable of revealing complete nanoscopic details of molecular events from most samples, it often provides so many details that they're difficult to tease apart and analyze. Ramamoorthy, whose children are fans of the Magic School Bus science series, challenged his lab group to find ways of "driving around" to explore the interior of bone, just as characters on the series might in their imaginary world. The researchers' real-world approach involved a different kind of magic.

Ramamoorthy and colleagues used a variation of solid-state NMR (nuclear magnetic resonance) spectroscopy called magic-angle spinning, a non-invasive technique that makes solid material as amenable to analysis as solutions are. Previous NMR studies have used pulverized bone, but the U-M group's instruments and methods made it possible to analyze a sample of intact cow bone. The bone sample was shaped to just fit the rotor that is spun at the so-called magic angle inside the probe of a solid-state NMR spectrometer.

With this technique, the researchers examined changes that occur in bone with water loss. The water content of bone tissue decreases with age, which---by affecting both collagen and minerals---reduces bone's strength and toughness.

"We were able to see dynamical structural changes with the main protein, collagen," Ramamoorthy said. "Its characteristic triple helix structure was not completely damaged, but its mobility was altered, in addition to a disorder in the structure."

The success of the study makes possible future research into how bone's constituents behave under different conditions.

"We'd like to look at how bone changes at the atomic level, as a function of aging," Ramamoorthy said, "and to make comparisons between diseased and healthy bone." Such studies may provide insights into the susceptibility of bone to fracture, especially in the osteoporotic tissues of many elderly people.

Ramamoorthy's coauthors on the paper are postdoctoral fellows Peizhi Zhu and Jiadi Xu, graduate student Nadder Sahar, chemistry professor Michael Morris and David Kohn, professor of biomedical engineering and of dentistry.

Funding was provided by the National Institutes of Health, the National Science Foundation and the Department of Defense.

For more information:
Ayyalusamy Ramamoorthy: www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?beginswith=Ramamoorthy

Michael Morris: www.chem.lsa.umich.edu/chem/faculty/facultyDetail.php?Uniqname=mdmorris

David Kohn: www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=434

Journal of the American Chemical Society: http://pubs.acs.org/journal/jacsat

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>