Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A high-yield biomass alternative to petroleum for industrial chemicals

26.11.2010
UMass Amherst chemical engineering breakthrough

A team of University of Massachusetts Amherst chemical engineers report in today's issue of Science that they have developed a way to produce high-volume chemical feedstocks including benzene, toluene, xylenes and olefins from pyrolytic bio-oils, the cheapest liquid fuels available today derived from biomass. The new process could reduce or eliminate industry's reliance on fossil fuels to make industrial chemicals worth an estimated $400 billion annually.

Instead of buying petroleum by the barrel, chemical manufacturers will now be able to use relatively cheaper, widely available pyrolysis oils made from waste wood, agricultural waste and non-food energy crops to produce the same high-value materials for making everything from solvents and detergents to plastics and fibers.

As principal investigator George Huber, associate professor of chemical engineering at UMass Amherst, explains, "Thanks to this breakthrough, we can meet the need to make commodity chemical feedstocks entirely through processing pyrolysis oils. We are making the same molecules from biomass that are currently being produced from petroleum, with no infrastructure changes required."

He adds, "We think this technology will provide a big boost to the economy because pyrolysis oils are commercially available now. The major difference between our approach and the current method is the feedstock; our process uses a renewable feedstock, that is, plant biomass. Rather than purchasing petroleum to make these chemicals, we use pyrolysis oils made from non-food agricultural crops and woody biomass grown domestically. This will also provide United States farmers and landowners a large additional revenue stream."

In the past, these compounds were made in a low-yield process, the chemical engineer adds. "But here we show how to achieve three times higher yields of chemicals from pyrolysis oil than ever achieved before. We've essentially provided a roadmap for converting low-value pyrolysis oils into products with a higher value than transportation fuels."

In the paper, he and doctoral students Tushar Vispute, Aimaro Sanno and Huiyan Zhang show how to make olefins such as ethylene and propylene, the building blocks of many plastics and resins, plus aromatics such as benzene, toluene and xylenes found in dyes, plastics and polyurethane, from biomass-based pyrolysis oils. They use a two-step, integrated catalytic approach starting with a "tunable," variable-reaction hydrogenation stage followed by a second, zeolite catalytic step. The zeolite catalyst has the proper pore structure and active sites to convert biomass-based molecules into aromatic hydrocarbons and olefins.

Huber, Vispute and colleagues discuss how to choose among three options including low- and high-temperature hydrogenation steps as well as the zeolite conversion for optimal results. Their findings indicate that "the olefin-to-aromatic ratio and the types of olefins and aromatics produced can be adjusted according to market demand." That is, using the new techniques, chemical producers can manage the carbon content from biomass they need, as well as hydrogen amounts. Huber and colleagues provide economic calculations for determining the optimal mix of hydrogen and pyrolytic oils, depending on market prices, to yield the highest-grade product at the lowest cost.

A pilot plant on the UMass Amherst campus is now producing these chemicals on a liter-quantity scale using this new method. The technology has been licensed to Anellotech Corp., co-founded by Huber and David Sudolsky of New York City. Anellotech is also developing UMass Amherst technology invented by the Huber research team to convert solid biomass directly into chemicals. Thus, pyrolysis oil represents a second renewable feedstock for Anellotech.

Sudolsky, Anellotech's CEO, says, "There are several companies developing technology to produce pyrolysis oil from biomass. The problem has been that pyrolysis oils must be upgraded to be useable. But with the new UMass Amherst process, Anellotech can now convert these pyrolysis oils into valuable chemicals at higher efficiency and with very attractive economics. This is very exciting."

Janet Lathrop | EurekAlert!
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New material for splitting water

19.06.2018 | Physics and Astronomy

Cementless fly ash binder makes concrete 'green'

19.06.2018 | Materials Sciences

Overdosing on Calcium

19.06.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>