Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Grid in the Brain

23.01.2014
How do we mentally calculate the distance between two places? Berlin scientists discover a grid-like network of nerve cells in the brain that could help with spatial orientation—similar to grid lines on city maps.

Animals and humans find their way through the world using an internally generated navigation system. In mammals, components of this navigational system are the hippocampus and the entorhinal cortex.


A grid-like network of nerve cells in the brain (left, and top right) shows a similar hexagonal organization (right, bottom) to the mental map formed by the nerve cells in the brain. Science

These structures memorize and represent our environment in form of a cognitive map, which is a mental representation of space. The representation of space in the entorhinal cortex is particularly fascinating—here, nerve cells discharge in a grid like pattern across space when the animal is moving.

It is thought that this so-called grid cell activity works much like the grid lines on a map providing mammals with a metric for space. So far, it has been unclear how such grid patterns of activated nerve cells are anatomically formed in the brain.

Now, a research team headed by Leibniz prize winner Professor Michael Brecht from the Humboldt-Universität in Berlin, the Cluster of Excellence Neurocure, and the Bernstein Center Berlin has discovered a grid-like network of nerve cells in the entorhinal cortex. By using a protein that binds to calcium in selected nerve cells, the scientists visualized a small circuit of nerve cells. The dendrites of these neurons formed a hexagonal pattern in space that had a striking resemblance to the known grid patterns. Moreover, the neurons in this network showed the same characteristic activity rhythm as the grid cells, when the researchers measured the nerve cell activity in moving animals.

“People have known that the brain divides places into grids, much like we draw lines on a map. However, what was not known is what causes the brain to do it. What we have shown here is the existence of a circuit in the brain, which physically looks like the spatial activity pattern of the so-called grid cells. This makes us think that this circuit structure might be the underlying cause of this representation”, Brecht comments on the study that has been published in the renowned scientific journal Science this Thursday.

Hence, the discovery of the neural network might help us to understand how the brain generates grid lines on our mental maps and how we mentally measure distances. The scientists also hope to gain insight into how the brain forms spatial memories—a brain function which is disturbed or lost in many neurodegenerative diseases such as dementia. On a more fundamental level, how the brain forms spatial memories may be related to how we form memories in general: as in the memory palaces of the ancient Greeks, objects could be linked with places to serve as a mnemonic device.

The Bernstein Center Berlin is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 170 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Prof. Dr. Michael Brecht
Bernstein Center Berlin
Humboldt-Universität zu Berlin
Philippstr. 13, House 6
10115 Berlin
Tel: +49 (0)30 2093 6718
Email: michael.brecht@bccn-berlin.de
Original publication:
S. Ray, R. Naumann, A. Burgalossi, Q. Tang, H. Schmidt & M. Brecht (2014): Grid-layout and Theta-modulation of Layer 2 Pyramidal Neurons in Medial Entorhinal Cortex. Science, Advanced Online Publication.

Weitere Informationen:

http://www.activetouch.de Lab of Michael Brecht
http://www.bccn-berlin.de Bernstein Center Berlin
http://www.hu-berlin.de Humboldt-Universität Berlin
http://wwww.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw
Further information:
http://wwww.nncn.de

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>