Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Good Eye for Oxygen

27.03.2009
Dye-doped nanoparticles very precisely indicate the oxygen concentration of cells and tissues

We cannot live without it; yet too much of it causes damage: oxygen is a critical component of many physiological and pathological processes in living cells.

Oxygen deficiency in tissues is thus related to tumor growth, retinal damage from diabetes, and rheumatoid arthritis. It is thus important to determine the oxygen content of cells and tissues, which is a challenge to scientists.

A team led by Jason McNeill at Clemson University (USA) has now developed a new technique based on dye-doped nanoparticles. As reported in the journal Angewandte Chemie, they are able to carry out very sensitive quantitative oxygen determinations.

Nanoparticle-based oxygen sensors typically consist of phosphorescent dyes encapsulated by a polymer or silica gel particle to shield the dye from the cellular environment. The nanoparticles also intensify the radiation of the dye. The American researchers have now developed a new nanoparticle architecture: they used a polymer with a special ð-conjugated electronic structure. The electrons can thus move more-or-less freely over the entire molecule.

The researchers used this polymer to produce nanoparticles that they doped with a platinum-porphyrin complex, an oxygen-sensitive phosphorescent dye. When irradiated, the polymer very efficiently absorbs the light energy and passes it on to the dye in “energy packets”. This results in phosphorescence that is five to ten times brighter than previous nanoparticle-based oxygen sensors. In comparison to conventional oxygen sensors, the light emitted is 1000 times brighter.

The particles are highly sensitive to oxygen: in nitrogen-saturated solution, the sensors initially glow intensely red. When oxygen is introduced, the dye interacts with it, reducing the phosphorescence. The more oxygen is present, the more the phosphorescence is quenched. The researchers were thus not only able to determine the concentration-dependence of the brightness, but also the lifetime of the phosphorescence: the duration of the dye’s glow is dependent on the oxygen concentration.

The new sensor is sensitive enough to detect individual particles. Because the nanoparticles are easily taken up by cells, they are ideal for the quantitative description of the local oxygen concentrations in living cells and tissues.

Author: Jason McNeill, Clemson University (USA), http://chemistry.clemson.edu/people/mcneill.html#1

Title: Ratiometric Single-Nanoparticle Oxygen Sensors for Biological Imaging

Angewandte Chemie International Edition 2009, 48, No. 15, 2741–2745, doi: 10.1002/anie.200805894

Jason McNeill | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://chemistry.clemson.edu/people/mcneill.html#1

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>