Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new gene silencing platform -- silence is golden

17.02.2009
Findings may lead to novel treatments for diseases resistant to current RNAi

A team of researchers led by Rutgers' Samuel Gunderson has developed a novel gene silencing platform with very significant improvements over existing RNAi approaches.

This may enable the development and discovery of a new class of drugs to treat a wide array of diseases. Critical to the technology is the approach this team took to specifically target RNA biosynthesis.

The research findings are reported in the journal Nature Biotechnology, published online in the February 15th issue.

Gunderson, an associate professor in the Department of Molecular Biology and Biochemistry at Rutgers, The State University of New Jersey, has created highly efficient gene silencing agents that function via a novel mechanism of action. The agents are single-stranded oligonucleotides, called U1 Adaptors, that have dual, and independent, functions. First is a target-gene binding domain that can be tailored to any gene. The second domain inhibits mRNA maturation by binding U1 snRNP, a component of the cellular splicing apparatus.

By combining both capabilities in the same molecule, the U1 Adaptor can inhibit the pre-mRNA maturation step of polyA tail addition in a gene specific manner. Further, the domains of the oligonucleotide are independent so transcript binding and U1 snRNP binding can be independently optimized and adapted to a wide array of genes associated with disease.

"The U1 Adaptor platform expands on early technologies that used 5'-end-mutated U1 snRNA," Gunderson explained. "The U1 Adaptor is an oligonucleotide version of this older method and instead targets the 3' end processing step. U1 Adaptors have high activity when used alone and are synergistic when used in combination with RNAi." Gunderson went on to say that the range of possible targets is very broad due to the mechanism of action in which inhibition occurs during the biosynthesis of mRNA at the near universal 3' end processing step. Perhaps the most interesting aspect of this technology is that U1 Adaptors can possibly inhibit genes that do not respond to current RNAi methods.

The applications of U1 Adaptors expand on those currently available using standard RNAi approaches. They can be used as a research tool to determine gene function and to validate gene targets. Gene silencing molecules also have potential prophylactic and therapeutic applications based upon ongoing clinical trials using RNAi and traditional antisense approaches. For some genes that cause disease, these other approaches may not be effective enough and U1 Adaptors may provide a novel solution.

Thomas Richardson | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Life Sciences:

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

nachricht Computers aid discovery of new, inexpensive material to make LEDs with high color quality
20.02.2018 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

Hidden talents: Converting heat into electricity with pencil and paper

20.02.2018 | Materials Sciences

Rare find from the deep sea

20.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>