Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new gene silencing platform -- silence is golden

17.02.2009
Findings may lead to novel treatments for diseases resistant to current RNAi

A team of researchers led by Rutgers' Samuel Gunderson has developed a novel gene silencing platform with very significant improvements over existing RNAi approaches.

This may enable the development and discovery of a new class of drugs to treat a wide array of diseases. Critical to the technology is the approach this team took to specifically target RNA biosynthesis.

The research findings are reported in the journal Nature Biotechnology, published online in the February 15th issue.

Gunderson, an associate professor in the Department of Molecular Biology and Biochemistry at Rutgers, The State University of New Jersey, has created highly efficient gene silencing agents that function via a novel mechanism of action. The agents are single-stranded oligonucleotides, called U1 Adaptors, that have dual, and independent, functions. First is a target-gene binding domain that can be tailored to any gene. The second domain inhibits mRNA maturation by binding U1 snRNP, a component of the cellular splicing apparatus.

By combining both capabilities in the same molecule, the U1 Adaptor can inhibit the pre-mRNA maturation step of polyA tail addition in a gene specific manner. Further, the domains of the oligonucleotide are independent so transcript binding and U1 snRNP binding can be independently optimized and adapted to a wide array of genes associated with disease.

"The U1 Adaptor platform expands on early technologies that used 5'-end-mutated U1 snRNA," Gunderson explained. "The U1 Adaptor is an oligonucleotide version of this older method and instead targets the 3' end processing step. U1 Adaptors have high activity when used alone and are synergistic when used in combination with RNAi." Gunderson went on to say that the range of possible targets is very broad due to the mechanism of action in which inhibition occurs during the biosynthesis of mRNA at the near universal 3' end processing step. Perhaps the most interesting aspect of this technology is that U1 Adaptors can possibly inhibit genes that do not respond to current RNAi methods.

The applications of U1 Adaptors expand on those currently available using standard RNAi approaches. They can be used as a research tool to determine gene function and to validate gene targets. Gene silencing molecules also have potential prophylactic and therapeutic applications based upon ongoing clinical trials using RNAi and traditional antisense approaches. For some genes that cause disease, these other approaches may not be effective enough and U1 Adaptors may provide a novel solution.

Thomas Richardson | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>