Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new gene-expression mechanism is a minor thing of major importance

22.08.2013
A rare, small RNA turns a gene-splicing machine into a switch that controls the expression of hundreds of human genes. Howard Hughes Medical Institute Investigator and professor of Biochemistry Gideon Dreyfuss, PhD, and his team from the Perelman School of Medicine at the University of Pennsylvania, discovered an entirely new aspect of the gene-splicing process that produces messenger RNA (mRNA).

The investigators found that a scarce, small RNA, called U6atac, controls the expression of hundreds of genes that have critical functions in cell growth, cell-cycle control, and global control of physiology. Their results were published in the journal eLife.

These genes encode proteins that play essential roles in cell physiology such as several transcription regulators, ion channels, signaling proteins, and DNA damage-repair proteins. Their levels in cells are regulated by the activity of the splicing machinery, which acts as a valve to control essential regulators of cell growth and response to external stimuli.

Dreyfuss, who studies RNA-binding proteins and their role in such diseases as spinal muscular atrophy and other motor neuron degenerative diseases, describes the findings as "completely unanticipated."

Complicated Splicing

As DNA is transcribed into RNA and then into the various proteins that perform the functions of life, non-coding gene sequences (introns) need to be removed from the transcribed RNA strand and the remaining gene sequences (exons) joined together. This is the job of specialized molecular machinery called the spliceosome. There are two varieties of spliceosomes, the so-called major and minor. The major spliceosome is by far the most abundant, such that the role of its minor counterpart is often disregarded.

"Most of the time the minor spliceosome, which has similar but not identical components to that of the major, isn't even mentioned," says Dreyfuss. With each type of spliceosome recognizing different splicing cues, the major spliceosome acts on the vast majority of introns (>200,000) and the minor one splices the several hundred minor-type introns.

But the evolutionary persistence and role of the minor spliceosome has been a puzzle to scientists, since the minor introns it targets are far outnumbered by the major introns handled by the major spliceosome, and the minor spliceosome is often inefficient. But the mRNAs produced from genes that have a minor intron are not ready until all their introns, both major and minor, are spliced. Thus a single inefficiently spliced minor intron can hold up expression – mRNA and protein production – for an entire gene. Researchers have therefore wondered why the apparently superfluous minor spliceosome hasn't been eliminated altogether through normal evolution.

"One looks at it and asks, we've known that minor spliceosomes are inefficient, why even bother to keep them under evolution's relentless selection pressure?" notes Dreyfuss. "It's been difficult to rationalize the conservation of minor introns and the minor spliceosome on the basis of splicing alone, as with few cue changes this function could simply have been performed by the major spliceosome."

More to the Minor

Dreyfuss's team discovered that there's more to the minor spliceosome while investigating the effects of different physiological conditions such as cell stress, transcription, and protein synthesis on small noncoding RNAs. "We inhibited transcription and then measured what happens to the amount of each of the small noncoding RNAs three or four hours later," he explains. "That's when we noticed that U6atac levels plunged." They found that U6atac, which is also the catalytic component of the minor spliceosome, is extremely unstable in a cell. "If you stop the transcription of U6atac, you stop producing it, and very quickly its levels become terribly low. And we knew that it's already one of the rarest snRNAs in cells. So we thought this surely will have an effect on minor intron splicing."

To test for such effects, the researchers deliberately knocked down U6atac in cells and then did genome-wide RNA sequencing. "We noticed that when you knock down U6atac, each minor intron responds differently," notes Dreyfuss. "Some of them showed that they're very inefficient and highly sensitive to U6atac level, which is an explanation for why the mRNA from those genes doesn't express well." Low U6atac levels within cells limit the rate of minor intron splicing, and thus the expression of important genes containing those minor introns.

Next, says Dreyfuss, "we started looking for any conditions where the levels of U6atac might be increased, so that the less efficient genes will be able to express. Out of the various conditions that we surveyed, we found that cell stress, which activates the p38MAPK pathway, causes a very large and rapid increase in U6atac and with that, a huge enhancement of the splicing of those minor introns that otherwise splice very inefficiently." (p38MAPK is a key component of cell signaling pathways that are activated during cell stress such as the release of inflammatory cytokines, ultraviolet radiation, heat, and osmotic shocks, so p38MAPK play an important role in cellular growth and differentiation, apoptosis, cancer, and autophagy).

A Valve and a Splicer

Sure enough, when U6atac levels are rapidly and steeply increased, "the bottleneck to the production of mRNA from those few hundred genes that contain a minor intron is removed." The p38MAPK signaling pathway – when activated under cell stress -- is one of potentially many ways in which U6atac levels can be modulated.

When minor spliceosome activity is reduced, the minor introns are retained in the mRNA while the major introns are spliced out. This signals the mRNA for degradation, limiting the expression of genes that contain minor introns.

The findings point to an entirely new and vital role for the minor spliceosome and particularly its U6atac component. More than simply splicing out minor introns, U6atac actually functions as a control and regulatory mechanism for minor intron-containing genes. "We propose that the minor spliceosome was conserved because it's used as a valve, not simply a spliceosome," Dreyfuss says. "It's a very important switch and it's an unexpected kind of mechanism."

Dreyfuss sees parallels between the discovery of U6atac's role in splicing and previous work by his lab that revealed the importance of U1, a major spliceosome component, in preventing the premature termination of mRNA transcription. "That was completely unanticipated and is a major area of interest, because this is a major way of regulating the transcriptome and mRNA length."

One of the team's next steps will be to determine exactly how p38MAPK, and possibly other molecules, acts to control U6atac levels.

Meanwhile, they have demonstrated the "folly" of casually disregarding the seemingly unimportant. "This provides a new perspective on minor introns and minor spliceosomes, because it's been a real mystery," says Dreyfuss.

Other coauthors on the paper include Penn researchers Ihab Younis, Lili Wan, Shawn Foley, Karen Hu and Michael Berg, and collaborators from New Jersey Institute of Technology, Wei Wang and Zhi Wei.

The research was funded by the Association Française Contre les Myopathies and the Howard Hughes Medical Institute.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 16 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $398 million awarded in the 2012 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2012, Penn Medicine provided $827 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>