Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A ‘finger’ pointing the way to new hepatitis C medication

09.11.2012
Braunschweig scientists develop compounds with potential against Hepatitis C virus

Some 160 million men and women are infected with Hepatitis C virus (HCV), the most common cause of cirrhosis and cancer of the liver. The present standard therapy is thraught with serious side-effects leading to a cure in only half of the patients. New therapies utilise small molecules that inhibit specific steps in the viral reproduction. However, the pathogen rapidly develops resistance, becoming insensitive to these agents.


HCV-infected cells: green, fat-droplets, in which the virus is being assembled; red, parts of the virus; blue, the liver cell nucleus
TWINCORE / T. Pietschmann

Researchers at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, in collaboration with colleagues from the TWINCORE in Hannover have discovered new drug leads that are also efficient against resistant virus. They present their work in the Journal of Biological Chemistry.

Interferons are used as classic medication against HCV as well as a few other viruses. Some interferons are produced naturally in the body in response to viral infection, others as immune modulators during inflammation. However, therapy with interferon is expensive, takes many months and has undesirable and unpleasant side effects. Hope was generated during the last few years through the development of a new generation of small drugs directed directly to the virus, in particular to those inhibiting the viral protease. These compounds inhibit viral replication by preventing the formation of the functional and structural components that must be cut out a precursor which the HCV virus instructs the host cell to produce in a single ‘block’. This cutting, or processing, is initiated by the viral protease which mutates rapidly, generating resistant variants for which the protease-inhibitors have lost their effectivity.

Scientists from the group of Prof. John Collins at the HZI have succeeded in identifying novel small molecules that are active against HCV. “Our molecules use several sites of action in inhibiting the viral protease. Amongst these one which had not previously been addressed by existing protease inhibitors,” explains Dr. Jonas Kügler, one of the participating scientists from the HZI. “Thus our molecules are effective against resistant virus with the expectation that the development of resistance will be more difficult,” adds his colleague Dr. Stefan Schmelz from the group of Prof. Dirk Heinz. Kügler and Schmelz are the first authors on the publication. This work is a colaboration between the groups of Collins and Heinz and scientists from the TWINCORE, Hannover, in the institute of Prof. Thomas Pietschmann.

The development of the novel inhibitors used an approach which combined two different tactics: In one special iterative enrichment process using ‘empirical selection’, the scientists searched for small proteins that bound specifically to the desired target: the HCV protease. During the second step, suitable candidates were then slightly modified on the basis of ‘rational design’ and thus further optimized for the desired property. This resulted in molecules that have a strong inhibitory effect on the protease when added at a very low concentration. All of the molecules share a novel structural feature which the researchers call a ‘tyrosine-finger’. This binds a region in the viral protease that was not bound by other inhibitors previously investigated.

“We do not expect that these molecules can be directly used for clinical antiviral therapy“ says John Collins. “Our results are, however, of great significance for the development of novel therapeutics effective even on virus resistant to other small inhibitors.” In the continuing race between the virus and the scientists, the researchers have achieved a new head-lead, or should one say a finger that points in the right direction.

Original publication:
Jonas Kügler, Stefan Schmelz, Juliane Gentzsch, Sibylle Haid, Erik Pollmann, Joop van den Heuvel, Raimo Franke, Thomas Pietschmann, Dirk W. Heinz and John Collins
High affinity peptide inhibitors of the hepatitis C virus NS3-4A protease refractory to common resistant mutants
Journal of Biological Chemistry, 2012
DOI: 10.1074/jbc.M112.393843

Dr. Jan Grabowski | Helmholtz Zentrum
Further information:
http://dx.doi.org/10.1074/jbc.M112.393843
http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/a_finger_pointing_the_way_to_new_hepatitis_c_medication/

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>