Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A new era for EU systems biology

Sixteen research projects worth EUR 24 million have been launched to address some of the biggest challenges facing us today, such as food security and human disease. Part of the EU's ERA-NET (European Research Area - Network) scheme, all of these projects use systems biology, a rapidly growing scientific field that is expected to contribute greatly to Europe's industrial competitiveness in the future.

Systems biology is based on the computer modelling of biological systems, ranging from single cells up to complete organisms. As an emerging interdisciplinary science, it combines methods from molecular biology, engineering sciences, mathematics, information technology, and systems sciences. As well as obvious medical applications, systems biology has the potential to have a significant impact on agriculture and biotechnology.

'Systems biology is a fantastically powerful approach and very versatile - as demonstrated by the range of projects funded through ERASYSBIO+,' said Professor Douglas Kell, Chief Executive of the UK's Biotechnology and Biological Sciences Research Council (BBSRC) and member of the ERASYSBIO+ ('The consolidation of systems biology research - stimulating the widespread adoption of systems approaches in biomedicine, biotechnology, and agri-food') consortium.

A total of 85 research groups from 14 different countries are involved in the projects, which include C5SYS ('Circadian and cell cycle clock systems in cancer'), SHIPREC ('Living with uninvited guests comparing plant and animal responses to endocytic invasions'), FRIM ('Fruit integrative modelling'), and GRAPPLE ('Iterative modelling of gene regulatory interactions underlying stress, disease and ageing in C. elegans').

'These projects not only bring together disciplines, but also countries, and this is the sort of collaborative working that is becoming increasingly important. If we are to make the best use of our bioscience knowledge, expertise and facilities in the UK then we absolutely must share them with colleagues outside the UK and in other fields such as mathematics, computing, chemistry and physics,' added Professor Kell.

The original ERASYSBIO ('Towards a European Research Area for systems biology - a transnational funding initiative to support the convergence of life sciences with information technology and systems sciences') ERA-NET ran from 2006 to 2009. It represented the first intense collaboration between the systems biology community and major funding agencies in several European countries. The initiative was an opportunity for agencies to coordinate their national research programmes in systems biology and to agree on a common agenda with joint activities.

Its successor, ERASYSBIO+, is an ERA-NET Plus action which provides additional EU financial support to facilitate joint calls for proposals between national and/or regional programmes (compared to an ERA-NET action, which provides the framework for bringing together stakeholders).

The focus of the ERASYSBIO+ consortium for the next five years will be to implement transnational funding activities for systems biology, such as the 16 recently-launched projects. A total of EUR 18.5 million in support of the research was provided by the partner countries themselves, while the EU contributed a further EUR 5.5 million.

ERASYSBIO+ is made up of 16 ministries and funding agencies from 13 countries. Partners of national programmes include representatives from Austria, Belgium, Finland, France, Germany, Israel, the Netherlands, Norway, Slovenia, Spain and the UK. The objective of the ERA-NET scheme is to build the European Research Area by developing and strengthening the coordination of national and regional research programmes.

For more information, please visit:

Biotechnology and Biological Sciences Research Council (BBSRC):
Category: Projects
Information Source: Biotechnology and Biological Sciences Research Council; ERASYSBIO+

Document Reference: Based on information from BBSRC and ERASYSBIO+

Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>