Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new era for EU systems biology

26.05.2010
Sixteen research projects worth EUR 24 million have been launched to address some of the biggest challenges facing us today, such as food security and human disease. Part of the EU's ERA-NET (European Research Area - Network) scheme, all of these projects use systems biology, a rapidly growing scientific field that is expected to contribute greatly to Europe's industrial competitiveness in the future.

Systems biology is based on the computer modelling of biological systems, ranging from single cells up to complete organisms. As an emerging interdisciplinary science, it combines methods from molecular biology, engineering sciences, mathematics, information technology, and systems sciences. As well as obvious medical applications, systems biology has the potential to have a significant impact on agriculture and biotechnology.

'Systems biology is a fantastically powerful approach and very versatile - as demonstrated by the range of projects funded through ERASYSBIO+,' said Professor Douglas Kell, Chief Executive of the UK's Biotechnology and Biological Sciences Research Council (BBSRC) and member of the ERASYSBIO+ ('The consolidation of systems biology research - stimulating the widespread adoption of systems approaches in biomedicine, biotechnology, and agri-food') consortium.

A total of 85 research groups from 14 different countries are involved in the projects, which include C5SYS ('Circadian and cell cycle clock systems in cancer'), SHIPREC ('Living with uninvited guests comparing plant and animal responses to endocytic invasions'), FRIM ('Fruit integrative modelling'), and GRAPPLE ('Iterative modelling of gene regulatory interactions underlying stress, disease and ageing in C. elegans').

'These projects not only bring together disciplines, but also countries, and this is the sort of collaborative working that is becoming increasingly important. If we are to make the best use of our bioscience knowledge, expertise and facilities in the UK then we absolutely must share them with colleagues outside the UK and in other fields such as mathematics, computing, chemistry and physics,' added Professor Kell.

The original ERASYSBIO ('Towards a European Research Area for systems biology - a transnational funding initiative to support the convergence of life sciences with information technology and systems sciences') ERA-NET ran from 2006 to 2009. It represented the first intense collaboration between the systems biology community and major funding agencies in several European countries. The initiative was an opportunity for agencies to coordinate their national research programmes in systems biology and to agree on a common agenda with joint activities.

Its successor, ERASYSBIO+, is an ERA-NET Plus action which provides additional EU financial support to facilitate joint calls for proposals between national and/or regional programmes (compared to an ERA-NET action, which provides the framework for bringing together stakeholders).

The focus of the ERASYSBIO+ consortium for the next five years will be to implement transnational funding activities for systems biology, such as the 16 recently-launched projects. A total of EUR 18.5 million in support of the research was provided by the partner countries themselves, while the EU contributed a further EUR 5.5 million.

ERASYSBIO+ is made up of 16 ministries and funding agencies from 13 countries. Partners of national programmes include representatives from Austria, Belgium, Finland, France, Germany, Israel, the Netherlands, Norway, Slovenia, Spain and the UK. The objective of the ERA-NET scheme is to build the European Research Area by developing and strengthening the coordination of national and regional research programmes.

For more information, please visit:

ERASYSBIO:
http://www.erasysbio.net/
Biotechnology and Biological Sciences Research Council (BBSRC):
http://www.bbsrc.ac.uk/
Category: Projects
Information Source: Biotechnology and Biological Sciences Research Council; ERASYSBIO+

Document Reference: Based on information from BBSRC and ERASYSBIO+

| CORDIS
Further information:
http://www.erasysbio.net/
http://www.bbsrc.ac.uk/
http://cordis.europa.eu

More articles from Life Sciences:

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Seeing more with PET scans: New chemistry for medical imaging
27.07.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>