Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new era for EU systems biology

26.05.2010
Sixteen research projects worth EUR 24 million have been launched to address some of the biggest challenges facing us today, such as food security and human disease. Part of the EU's ERA-NET (European Research Area - Network) scheme, all of these projects use systems biology, a rapidly growing scientific field that is expected to contribute greatly to Europe's industrial competitiveness in the future.

Systems biology is based on the computer modelling of biological systems, ranging from single cells up to complete organisms. As an emerging interdisciplinary science, it combines methods from molecular biology, engineering sciences, mathematics, information technology, and systems sciences. As well as obvious medical applications, systems biology has the potential to have a significant impact on agriculture and biotechnology.

'Systems biology is a fantastically powerful approach and very versatile - as demonstrated by the range of projects funded through ERASYSBIO+,' said Professor Douglas Kell, Chief Executive of the UK's Biotechnology and Biological Sciences Research Council (BBSRC) and member of the ERASYSBIO+ ('The consolidation of systems biology research - stimulating the widespread adoption of systems approaches in biomedicine, biotechnology, and agri-food') consortium.

A total of 85 research groups from 14 different countries are involved in the projects, which include C5SYS ('Circadian and cell cycle clock systems in cancer'), SHIPREC ('Living with uninvited guests comparing plant and animal responses to endocytic invasions'), FRIM ('Fruit integrative modelling'), and GRAPPLE ('Iterative modelling of gene regulatory interactions underlying stress, disease and ageing in C. elegans').

'These projects not only bring together disciplines, but also countries, and this is the sort of collaborative working that is becoming increasingly important. If we are to make the best use of our bioscience knowledge, expertise and facilities in the UK then we absolutely must share them with colleagues outside the UK and in other fields such as mathematics, computing, chemistry and physics,' added Professor Kell.

The original ERASYSBIO ('Towards a European Research Area for systems biology - a transnational funding initiative to support the convergence of life sciences with information technology and systems sciences') ERA-NET ran from 2006 to 2009. It represented the first intense collaboration between the systems biology community and major funding agencies in several European countries. The initiative was an opportunity for agencies to coordinate their national research programmes in systems biology and to agree on a common agenda with joint activities.

Its successor, ERASYSBIO+, is an ERA-NET Plus action which provides additional EU financial support to facilitate joint calls for proposals between national and/or regional programmes (compared to an ERA-NET action, which provides the framework for bringing together stakeholders).

The focus of the ERASYSBIO+ consortium for the next five years will be to implement transnational funding activities for systems biology, such as the 16 recently-launched projects. A total of EUR 18.5 million in support of the research was provided by the partner countries themselves, while the EU contributed a further EUR 5.5 million.

ERASYSBIO+ is made up of 16 ministries and funding agencies from 13 countries. Partners of national programmes include representatives from Austria, Belgium, Finland, France, Germany, Israel, the Netherlands, Norway, Slovenia, Spain and the UK. The objective of the ERA-NET scheme is to build the European Research Area by developing and strengthening the coordination of national and regional research programmes.

For more information, please visit:

ERASYSBIO:
http://www.erasysbio.net/
Biotechnology and Biological Sciences Research Council (BBSRC):
http://www.bbsrc.ac.uk/
Category: Projects
Information Source: Biotechnology and Biological Sciences Research Council; ERASYSBIO+

Document Reference: Based on information from BBSRC and ERASYSBIO+

| CORDIS
Further information:
http://www.erasysbio.net/
http://www.bbsrc.ac.uk/
http://cordis.europa.eu

More articles from Life Sciences:

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

nachricht Helping in spite of risk: Ants perform risk-averse sanitary care of infectious nest mates
21.02.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

World's first solar fuels reactor for night passes test

21.02.2018 | Earth Sciences

Similarities found in cancer initiation in kidney, liver, stomach, pancreas

21.02.2018 | Health and Medicine

First line of defence against influenza further decoded

21.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>