Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Even in a crowd, you remain unique, UCLA life scientists report

23.02.2011
"Am I just a face in the crowd? Is that all I'll ever be? ... Do you think I stand out?" — The Kinks, "A Face in the Crowd"
It may seem paradoxical, but being part of a crowd is what makes you unique, according to UCLA life scientists.

Biologists Kimberly Pollard and Daniel Blumstein examined the evolution of individuality —personal uniqueness — by recording alarm-call vocalizations in eight species of rodents that live in social groups of various sizes. They found that the size of the groups strongly predicted the individual uniqueness in the animals' voices: The bigger the group, the more unique each animal's voice typically was and the easier it was to tell individuals apart.

Their research will be published as the cover article in the March 8 print issue of the journal Current Biology and is now available online.

The findings — resulting from six years of research by Blumstein, professor and chair of ecology and evolutionary biology at UCLA, and Pollard, who conducted the research as a doctoral student in Blumstein's laboratory — may help explain a fact critical to the everyday lives of humans and other social creatures: why everybody is different.

The reason, the researchers say, is due to a "Where's Waldo" effect in which it is difficult to pick one individual out of a crowd, and the bigger the crowd, the harder it is.

"But humans and other social creatures can't just give up when crowds get large," said Pollard, the study's lead author. "We still must be able to identify our friends, our family and our rivals within that crowd."

The species that had to contend with bigger crowds did so with more unique voices, the researchers found. The larger the social group, the easier it was to tell any two individual animals apart.

"Nature has solved the 'Where's Waldo' problem by endowing highly social creatures with more unique features, which helps them find their pals in the crowd," said Pollard, currently a postdoctoral scholar at the U.S. Army Research Laboratory in Maryland.

And if social species — like humans, for example — were to evolve to consistently live in larger and larger groups, this would likely set the stage for the evolution of even greater individuality, the researchers predict.

"The number of individuals that humans must recognize seems to be growing, especially as we become more globally connected and as social groups become less clearly defined," Pollard said. "This is probably increasing the evolutionary pressure on our own individuality.

"This research helps to explain something that is such a core, critical part of our daily experience — our own uniqueness as individuals," she said. "Our results shed light on the underlying evolutionary reasons why we are all so different."

Pollard's research was funded by the National Science Foundation's Graduate Research Fellowship Program, as well as other scientific organizations.

UCLA is California's largest university, with an enrollment of more than 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 328 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and five faculty have been awarded the Nobel Prize.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>