Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Even in a crowd, you remain unique, UCLA life scientists report

23.02.2011
"Am I just a face in the crowd? Is that all I'll ever be? ... Do you think I stand out?" — The Kinks, "A Face in the Crowd"
It may seem paradoxical, but being part of a crowd is what makes you unique, according to UCLA life scientists.

Biologists Kimberly Pollard and Daniel Blumstein examined the evolution of individuality —personal uniqueness — by recording alarm-call vocalizations in eight species of rodents that live in social groups of various sizes. They found that the size of the groups strongly predicted the individual uniqueness in the animals' voices: The bigger the group, the more unique each animal's voice typically was and the easier it was to tell individuals apart.

Their research will be published as the cover article in the March 8 print issue of the journal Current Biology and is now available online.

The findings — resulting from six years of research by Blumstein, professor and chair of ecology and evolutionary biology at UCLA, and Pollard, who conducted the research as a doctoral student in Blumstein's laboratory — may help explain a fact critical to the everyday lives of humans and other social creatures: why everybody is different.

The reason, the researchers say, is due to a "Where's Waldo" effect in which it is difficult to pick one individual out of a crowd, and the bigger the crowd, the harder it is.

"But humans and other social creatures can't just give up when crowds get large," said Pollard, the study's lead author. "We still must be able to identify our friends, our family and our rivals within that crowd."

The species that had to contend with bigger crowds did so with more unique voices, the researchers found. The larger the social group, the easier it was to tell any two individual animals apart.

"Nature has solved the 'Where's Waldo' problem by endowing highly social creatures with more unique features, which helps them find their pals in the crowd," said Pollard, currently a postdoctoral scholar at the U.S. Army Research Laboratory in Maryland.

And if social species — like humans, for example — were to evolve to consistently live in larger and larger groups, this would likely set the stage for the evolution of even greater individuality, the researchers predict.

"The number of individuals that humans must recognize seems to be growing, especially as we become more globally connected and as social groups become less clearly defined," Pollard said. "This is probably increasing the evolutionary pressure on our own individuality.

"This research helps to explain something that is such a core, critical part of our daily experience — our own uniqueness as individuals," she said. "Our results shed light on the underlying evolutionary reasons why we are all so different."

Pollard's research was funded by the National Science Foundation's Graduate Research Fellowship Program, as well as other scientific organizations.

UCLA is California's largest university, with an enrollment of more than 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 328 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and five faculty have been awarded the Nobel Prize.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>