Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cell that is ‘adrift’ is not able to divide normally

16.09.2008
Researchers of VTT and the University of Turku discover new information on cancer generation mechanisms

A joint research group of VTT Technical Research Centre of Finland and the University of Turku, led by Professor Johanna Ivaska, has discovered why cells require surrounding tissue in order to be able to divide.

By doing so, the group has solved a mystery that has puzzled cancer researchers for decades. The research results show why a cell which is ‘adrift’, i.e. separated from the surrounding tissue, is not able to divide normally. This causes changes in the cell’s genotype which expose the body to cancer.

For decades, researchers have known that human cells must be in their right place in the body, surrounded by tissue, in order for them to be able to divide normally. When separated from the rest of the tissue, normal cells are not able to divide and will thus die.

Microscopic images taken by the group’s doctoral researchers, Saara Tuomi and Teijo Pellinen, revealed that a dividing cell anchors itself during the various stages of division by using cell adhesion receptors called integrins. A cell with malfunctioning anchoring molecules will become adrift and start to divide abnormally and thus acquire the potential to become a cancer cell. The research group also uncovered evidence, in cooperation with a research group led by professor Olli Kallioniemi, that the anchoring mechanism had been disturbed in some cases of ovarian cancer and in some prostate cancer metastases.

The finding supports the hypothesis proposed by scientists at the beginning of the last century that abnormal cell division is one of the mechanisms in the development of cancer.

The research results open an entirely new perspective on the early stages of the development of cancer and how the changes occurring in cancerous tissue enable the cancer to continuously become a more malignant and more aggressive tumour. When cells become independent of their anchoring mechanisms, a vicious circle is created: genotype changes occurring at an ever-increasing pace enable the disease to become more and more aggressive.

The research results were published on 16 September 2008 in Developmental Cell, a leading journal in cell and developmental biology. The results will have an impact on the future direction of cancer research.

Publication: Pellinen T., Tuomi S., Arjonen A., Wolf M., Edgren H., Meyer H., Grosse R., Kitzing T., Rantala JK., Kallioniemi O., Fässler R., Kallio M., and Ivaska J. (2008), Integrin traffic regulated by Rab21 is necessary for cytokinesis. (Developmental Cell).

For further information, please contact:

VTT Technical Research Centre of Finland
Professor Johanna Ivaska
tel. +358 20 722 2807, johanna.ivaska@vtt.fi
Information on VTT:
Irma Lind
Marketing Communications Manager
Tel. +358 20 722 6742
irma.lind@vtt.fi

Irma Lind | VTT
Further information:
http://www.vtt.fi

Further reports about: Cell Molecule Tissue VTT cell’s genotype mechanism normally

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>