Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Bug’s Life ... in a Bubble

Have you ever wondered how some bugs can stay under water for so long? University of Alberta researcher Morris Flynn, and his colleagues at MIT in Massachusetts, found these insects rely on a bubble that acts as an external lung.

Hundreds of insect species live mainly underwater, but how do they breathe? University of Alberta researcher Morris Flynn did a study to find out how these species are able to remain underwater without drowning.

According to Flynn, the rough, waxy surfaces of insects and spiders are water-repellent. In some species, water-repellency is so pronounced that creatures may survive underwater for indefinite periods. This is achieved by an air bubble called a plastron that the insect traps between its body and its hairs, creating an external lung. This lung facilitates oxygen and carbon dioxide exchange with the surrounding water. “The closer together the hairs, the more pressure the bubble can withstand before collapsing,” Flynn says.

Flynn, and his colleagues at MIT in Massachusetts, found these insects cannot survive in deep waters where the pressure results in bubble rupture, nor can they survive in shallow waters where the bubble surface area is too small. “We were surprised by the fact that, in some cases, bugs may be unable to survive in shallow water. But we did discover they can safely dive as deep as 30 metres.”

... more about:
»external lung »insect »insect species »species

Flynn did this research while he was at MIT in Massachusetts. He is now continuing his work in the department of mechanical engineering at the University of Alberta.

This research is in the August 10 issue of the Journal of Fluid Mechanics.

| Newswise Science News
Further information:

Further reports about: external lung insect insect species species

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>