Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A bit of boron, a pinch of palladium

02.08.2011
One-stop shop for the Suzuki reaction

Carbon-containing compounds are at the heart of organic chemistry, and carbon is the basis of all living matter. However, the so-called Suzuki reaction provides a simple means of creating carbon-carbon bonds to form compounds that can serve as the starting points for the synthesis of an infinite variety of organic molecules.

A team of researchers led by LMU chemist Professor Paul Knochel has recently developed a practical and general method for the synthesis of a class of intermediates that readily undergo the Suzuki reaction. “The new method is broadly applicable to diverse starting compounds and is very economical because it produces very few unwanted byproducts,” says Knochel. “It should also be of great interest in an industrial setting, where Suzuki reactions are used in the development of medicinal compounds and novel materials such as liquid crystals for display screens.” (Angewandte Chemie International Edition, 1. August 2011)

The Suzuki reaction – which involves the use of palladium to catalyze the cross-coupling of organoboron compounds with organic halogen-containing molecules – makes it possible to link carbon atoms together in a very straightforward way. The products of the reaction can then be utilized for the construction of a virtually unlimited number of organic substances. The Suzuki reaction thus forms the basis for the synthesis of novel drugs and innovative materials. Akira Suzuki was awarded the Nobel Prize in Chemistry for his discovery of the reaction that bears his name.

Knochel and his team were hoping to extend the applicability of the reaction by finding an easy, economical and general way to synthesize the necessary organoboron compounds so that they could be used in Suzuki reactions without further purification. “We were able to optimize the process in such a way that the boronates can be made in a one-pot reaction”, says Christoph Sämann, who made a major contribution to the study. “The method works well under very mild conditions, is compatible with many different functional groups and can therefore be applied to a wide range of compounds.”

In contrast to the organoboronates that have been used so far, the products generated via the new synthetic route have two organic groups attached to the boron atom, and both can be transferred, without loss, in the course of the subsequent Suzuki reaction. “This significantly improves overall yields, making the reaction much more economical,” says Knochel. “The new reaction also produces less waste, which is an especially important consideration in industrial applications.” (suwe)

Publication:
Practical One-pot Preparation of Magnesium Diaryl-, Diheteroaryl- and Dialkenyl-boronates for Suzuki-Miyaura Cross-Couplings
Benjamin A. Haag, Christoph Sämann, Anukul Jana, Paul Knochel;
Angewandte Chemie, International Edition, 1. August 2011;
Web: http://dx.doi.org/10.1002/anie.201103022
Contact:
Professor Dr. Paul Knochel
Department of Chemistry and Biochemistry, LMU Munich
Phone: +49 89 / 2180 – 77681
Fax: +49 89 / 2180 – 77680
Email: knoch@cup.uni-muenchen.de

Kathrin Bilgeri | EurekAlert!
Further information:
http://www.knochel.cup.uni-muenchen.de
http://www.lmu.de

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>