Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New ‘Bent’ on Fusion

21.08.2009
Success in soccer sometimes comes with “bending it like Beckham.” Success in cellular fusion — as occurs at the moment of conception and when nerve cells exchange neurotransmitters — requires that a membrane be bent before the merging process can begin, University of Wisconsin-Madison researchers have shown.

The scientists offer the first concrete evidence that a protein called synaptotagmin plays a critical role in initiating fusion by bending a section of a target membrane. The protruding dimple provides a small point of contact that can fuse with another membrane with less effort.

The finding, reported in the current issue (Aug. 21) of Cell, answers important questions relating to one of the most fundamental processes in biology.

“Fusion occurs when a sperm and an egg combine to make a person and when a virus such as HIV invades an immune cell,” says senior author Edwin R. Chapman, a Howard Hughes Medical Institute professor in the physiology department at the UW-Madison School of Medicine and Public Health.

Fusion also takes place when cells deliver molecules onto their surfaces or exchange them with each other, as occurs during the transmission of messages between neurons at specialized structures called synapses. And fusion is the same process that lets the dozens of compartments working within cells transfer their contents to one another.

The process typically begins when a vesicle, or bubble-like container, buds off a donor compartment and travels to an “accepting” compartment.

“Fusion is an elementary issue that biologists have pondered for a long time,” says Chapman, a synaptotagmin expert who has contributed significantly to understanding the protein’s role in fusion during nerve cell communication. “It’s something I’ve been thinking about since 1992.”

A study by one group of scientists led to the theory that synaptotagmin bends the target membrane to begin fusion, but the theory had never been tested. That study used vesicles that already were highly curved, so it was not clear what bending effect synaptotagmin was actually having on them.

The Chapman team addressed the problem by creating vesicles with different degrees of curvature, including some that were only slightly curved. By exposing the differently curved vesicles to mutated synaptotagmin, which lacked membrane-bending capability, the researchers showed that the target membrane must be bent for fusion to occur.

To find a way to compensate for the mutated synaptotagmin’s inability to bend membranes, Chapman’s group turned to a protein that controls the bending of membranes when vesicles are returned to their original form during fission, which involves the splitting apart of membranes in a process called endocytosis. The researchers found that the endocytic protein overcame the fusion deficiency.

“Nobody had ever done this,” notes Chapman, “although L.V. Chernomordik had suggested that fission and fusion proceed via similar intermediate structures. He was right.”

The UW-Madison team also showed that a particular segment of synaptotagmin is responsible for bending membranes.

Enfu Hui, Colin Johnson and Jun Yao were co-first authors on this study and Mark Dunning also contributed to the research.

Dian Land | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>