Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New ‘Bent’ on Fusion

21.08.2009
Success in soccer sometimes comes with “bending it like Beckham.” Success in cellular fusion — as occurs at the moment of conception and when nerve cells exchange neurotransmitters — requires that a membrane be bent before the merging process can begin, University of Wisconsin-Madison researchers have shown.

The scientists offer the first concrete evidence that a protein called synaptotagmin plays a critical role in initiating fusion by bending a section of a target membrane. The protruding dimple provides a small point of contact that can fuse with another membrane with less effort.

The finding, reported in the current issue (Aug. 21) of Cell, answers important questions relating to one of the most fundamental processes in biology.

“Fusion occurs when a sperm and an egg combine to make a person and when a virus such as HIV invades an immune cell,” says senior author Edwin R. Chapman, a Howard Hughes Medical Institute professor in the physiology department at the UW-Madison School of Medicine and Public Health.

Fusion also takes place when cells deliver molecules onto their surfaces or exchange them with each other, as occurs during the transmission of messages between neurons at specialized structures called synapses. And fusion is the same process that lets the dozens of compartments working within cells transfer their contents to one another.

The process typically begins when a vesicle, or bubble-like container, buds off a donor compartment and travels to an “accepting” compartment.

“Fusion is an elementary issue that biologists have pondered for a long time,” says Chapman, a synaptotagmin expert who has contributed significantly to understanding the protein’s role in fusion during nerve cell communication. “It’s something I’ve been thinking about since 1992.”

A study by one group of scientists led to the theory that synaptotagmin bends the target membrane to begin fusion, but the theory had never been tested. That study used vesicles that already were highly curved, so it was not clear what bending effect synaptotagmin was actually having on them.

The Chapman team addressed the problem by creating vesicles with different degrees of curvature, including some that were only slightly curved. By exposing the differently curved vesicles to mutated synaptotagmin, which lacked membrane-bending capability, the researchers showed that the target membrane must be bent for fusion to occur.

To find a way to compensate for the mutated synaptotagmin’s inability to bend membranes, Chapman’s group turned to a protein that controls the bending of membranes when vesicles are returned to their original form during fission, which involves the splitting apart of membranes in a process called endocytosis. The researchers found that the endocytic protein overcame the fusion deficiency.

“Nobody had ever done this,” notes Chapman, “although L.V. Chernomordik had suggested that fission and fusion proceed via similar intermediate structures. He was right.”

The UW-Madison team also showed that a particular segment of synaptotagmin is responsible for bending membranes.

Enfu Hui, Colin Johnson and Jun Yao were co-first authors on this study and Mark Dunning also contributed to the research.

Dian Land | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>