Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New ‘Bent’ on Fusion

21.08.2009
Success in soccer sometimes comes with “bending it like Beckham.” Success in cellular fusion — as occurs at the moment of conception and when nerve cells exchange neurotransmitters — requires that a membrane be bent before the merging process can begin, University of Wisconsin-Madison researchers have shown.

The scientists offer the first concrete evidence that a protein called synaptotagmin plays a critical role in initiating fusion by bending a section of a target membrane. The protruding dimple provides a small point of contact that can fuse with another membrane with less effort.

The finding, reported in the current issue (Aug. 21) of Cell, answers important questions relating to one of the most fundamental processes in biology.

“Fusion occurs when a sperm and an egg combine to make a person and when a virus such as HIV invades an immune cell,” says senior author Edwin R. Chapman, a Howard Hughes Medical Institute professor in the physiology department at the UW-Madison School of Medicine and Public Health.

Fusion also takes place when cells deliver molecules onto their surfaces or exchange them with each other, as occurs during the transmission of messages between neurons at specialized structures called synapses. And fusion is the same process that lets the dozens of compartments working within cells transfer their contents to one another.

The process typically begins when a vesicle, or bubble-like container, buds off a donor compartment and travels to an “accepting” compartment.

“Fusion is an elementary issue that biologists have pondered for a long time,” says Chapman, a synaptotagmin expert who has contributed significantly to understanding the protein’s role in fusion during nerve cell communication. “It’s something I’ve been thinking about since 1992.”

A study by one group of scientists led to the theory that synaptotagmin bends the target membrane to begin fusion, but the theory had never been tested. That study used vesicles that already were highly curved, so it was not clear what bending effect synaptotagmin was actually having on them.

The Chapman team addressed the problem by creating vesicles with different degrees of curvature, including some that were only slightly curved. By exposing the differently curved vesicles to mutated synaptotagmin, which lacked membrane-bending capability, the researchers showed that the target membrane must be bent for fusion to occur.

To find a way to compensate for the mutated synaptotagmin’s inability to bend membranes, Chapman’s group turned to a protein that controls the bending of membranes when vesicles are returned to their original form during fission, which involves the splitting apart of membranes in a process called endocytosis. The researchers found that the endocytic protein overcame the fusion deficiency.

“Nobody had ever done this,” notes Chapman, “although L.V. Chernomordik had suggested that fission and fusion proceed via similar intermediate structures. He was right.”

The UW-Madison team also showed that a particular segment of synaptotagmin is responsible for bending membranes.

Enfu Hui, Colin Johnson and Jun Yao were co-first authors on this study and Mark Dunning also contributed to the research.

Dian Land | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>