Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new anti-fouling principle for anti-fouling paints - almost 100 percent effective against barnacles

11.05.2009
Researchers at the University of Gothenburg, Sweden, have been working with the Swedish Chemicals Inspectorate and paint manufacturers on a new, low-emission, environmental hull paint based on a new principle called Post settlement inhibition (PSI).

The paint is almost 100 percent effective in keeping barnacles away. An extension of the new principle may be to further develop paints that will be effective against all hull-fouling, without damaging marine organisms in the open water and sediment.

Most commercial anti-fouling paints contain pesticides, which slowly erode into the water, either killing off or discouraging organisms that try to attach themselves to the surface. One of the most commonly used substances is copper, which means that around 40 tonnes of copper are distributed along the Swedish west coast every year.

Researchers at the University of Gothenburg have been working in association with the Swedish Chemicals Inspectorate and paint manufacturer International Paint AB, as well as others, to develop a new principle for effective hull paints, called "post settlement inhibition", or PSI. This principle also uses pesticides, but unlike other paints that are harmful to the environment, the PSI substances are strongly associated with the paint's binding matrix agent, so that only tiny amounts are released into the marine environment. Adding a high-molecular solvent to the paint helps to channel the substance directly to the organism instead.

The paint allows the barnacles to colonise on the hull with its larva. The anti-fouling effect begins to kick in when the barnacle tries to attach itself more tightly to the surface and comes into contact with the pesticide, which causes it to release its grip (hence the term, "post settlement inhibition"). The emission of pesticide in the environment is at the same time very low. Extensive tests conducted with volunteer boat-owners reveal that the PSI principle is very effective. Barnacle colonisation is reduced by at least 90, but often up to 100 percent.

The principle has taken its inspiration from the natural world, where certain types of algae use a similar method to discourage fouling on the surface of their leaves. The new PSI paint releases negligible amounts of pesticide into the marine environment, and the amount of pesticide that is actually in the layer of paint is relatively low. When the boat is taken out of the water, the PSI paint can be scraped off and dealt with according to the procedures that are in place at most marinas.

"In the long term, we are hoping to be able to use the PSI principle to tackle fouling by other animals and algae. The ultimate goal is a marine paint formula that is effective against all kinds of fouling, but that has a negligible impact on other organisms in the marine environment," says leader of the project Professor Hans Elwing at the Department of Cell and Molecular Biology, University of Gothenburg.

The breakthrough in the paint project came when researchers discovered the special solvent that is part of the PSI system. "We were very lucky to make the discovery. At the same time, it's taken us ten years of research to get where we are today. The journey has been peppered with failures, but my colleagues have also been passionate about this project, and there has been considerable enthusiasm from boat owners," says Hans Elwing.

The new PSI principle is being developed in cooperation with a research programme called MARINORD, which is being financed by NordicInnovation. The project is being sponsored by the Technical Research Institute of Sweden in Borås, and several paint companies.

For further information, please contact:
Hans Elwing, Professor in Surface Biophysics, Department of Cell and Molecular Biology, University of Gothenburg
+46 (0)733604607
Hans.Elwing@cmb.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se/
http://www.science.gu.se/english/News/News_detail/?contentId=879806&languageId=100001&disableRedirect=true&disableRedirect=true&returnU

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>