Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new anti-fouling principle for anti-fouling paints - almost 100 percent effective against barnacles

11.05.2009
Researchers at the University of Gothenburg, Sweden, have been working with the Swedish Chemicals Inspectorate and paint manufacturers on a new, low-emission, environmental hull paint based on a new principle called Post settlement inhibition (PSI).

The paint is almost 100 percent effective in keeping barnacles away. An extension of the new principle may be to further develop paints that will be effective against all hull-fouling, without damaging marine organisms in the open water and sediment.

Most commercial anti-fouling paints contain pesticides, which slowly erode into the water, either killing off or discouraging organisms that try to attach themselves to the surface. One of the most commonly used substances is copper, which means that around 40 tonnes of copper are distributed along the Swedish west coast every year.

Researchers at the University of Gothenburg have been working in association with the Swedish Chemicals Inspectorate and paint manufacturer International Paint AB, as well as others, to develop a new principle for effective hull paints, called "post settlement inhibition", or PSI. This principle also uses pesticides, but unlike other paints that are harmful to the environment, the PSI substances are strongly associated with the paint's binding matrix agent, so that only tiny amounts are released into the marine environment. Adding a high-molecular solvent to the paint helps to channel the substance directly to the organism instead.

The paint allows the barnacles to colonise on the hull with its larva. The anti-fouling effect begins to kick in when the barnacle tries to attach itself more tightly to the surface and comes into contact with the pesticide, which causes it to release its grip (hence the term, "post settlement inhibition"). The emission of pesticide in the environment is at the same time very low. Extensive tests conducted with volunteer boat-owners reveal that the PSI principle is very effective. Barnacle colonisation is reduced by at least 90, but often up to 100 percent.

The principle has taken its inspiration from the natural world, where certain types of algae use a similar method to discourage fouling on the surface of their leaves. The new PSI paint releases negligible amounts of pesticide into the marine environment, and the amount of pesticide that is actually in the layer of paint is relatively low. When the boat is taken out of the water, the PSI paint can be scraped off and dealt with according to the procedures that are in place at most marinas.

"In the long term, we are hoping to be able to use the PSI principle to tackle fouling by other animals and algae. The ultimate goal is a marine paint formula that is effective against all kinds of fouling, but that has a negligible impact on other organisms in the marine environment," says leader of the project Professor Hans Elwing at the Department of Cell and Molecular Biology, University of Gothenburg.

The breakthrough in the paint project came when researchers discovered the special solvent that is part of the PSI system. "We were very lucky to make the discovery. At the same time, it's taken us ten years of research to get where we are today. The journey has been peppered with failures, but my colleagues have also been passionate about this project, and there has been considerable enthusiasm from boat owners," says Hans Elwing.

The new PSI principle is being developed in cooperation with a research programme called MARINORD, which is being financed by NordicInnovation. The project is being sponsored by the Technical Research Institute of Sweden in Borås, and several paint companies.

For further information, please contact:
Hans Elwing, Professor in Surface Biophysics, Department of Cell and Molecular Biology, University of Gothenburg
+46 (0)733604607
Hans.Elwing@cmb.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se/
http://www.science.gu.se/english/News/News_detail/?contentId=879806&languageId=100001&disableRedirect=true&disableRedirect=true&returnU

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>