Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D RNA modeling opens scientific doors

16.04.2012
In a paper published today in the journal Nature Methods, a team from the University of North Carolina at Chapel Hill demonstrates a simple, cost-effective technique for three-dimensional RNA structure prediction that will help scientists understand the structures, and ultimately the functions, of the RNA molecules that dictate almost every aspect of human cell behavior. When cell behavior goes wrong, diseases – including cancer and metabolic disorders – can be the result.

Over the past five decades, scientists have described more than 80,000 protein structures, most of which are now publicly available and provide important information to medical researchers searching for targets for drug therapy. However, a similar effort to catalogue RNA structures has mapped only a few hundred RNA molecules. As a result, the potential of RNA molecules has just barely been developed as targets for new therapeutics.

"To effectively target these molecules, researchers often need a three-dimensional picture of what they look like," says Nikolay Dokholyan, PhD, professor in the department of biochemistry and biophysics, and the project's co-leader.

"With Dr. Kevin Weeks' lab, we have developed a way to create a three-dimensional map of complex RNAs that are not amenable to study through other methods. It builds on information from a routine laboratory experiment, used in the past to evaluate RNA models from a qualitative standpoint. Our team has created a sophisticated quantitative model that uses this simple information to predict structures for large, complex RNA molecules, which have previously been beyond the reach of modeling techniques," he adds.

Dokholyan, who is a member of UNC Lineberger Comprehensive Cancer Center and director of the UNC Center for Computational and Systems Biology, hopes that the method will help researchers who are trying to target RNAs molecules to change cellular metabolism in a way that ultimately reduces the effects of cellular diseases like cancer. He notes, "Rational, cost-effective screening for small molecules requires a good understanding of the targeted structure. We hope that this method will open doors to new findings applicable to a wide range of human diseases."

Other members of the research team include Feng Ding, PhD, Research Assistant Professor of biochemistry and biophysics, Christopher Lavendar, a graduate student of in the department chemistry, and study co-leader Kevin Weeks, PhD, Kenan Distinguished Professor of Chemistry and UNC Lineberger member.

The research was funded by the National Institutes of Health and the University of North Carolina Research Council.

Ellen de Graffenreid | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: 3-D image Biochemistry RNA RNA molecule UNC protein structure

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>