Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D RNA modeling opens scientific doors

16.04.2012
In a paper published today in the journal Nature Methods, a team from the University of North Carolina at Chapel Hill demonstrates a simple, cost-effective technique for three-dimensional RNA structure prediction that will help scientists understand the structures, and ultimately the functions, of the RNA molecules that dictate almost every aspect of human cell behavior. When cell behavior goes wrong, diseases – including cancer and metabolic disorders – can be the result.

Over the past five decades, scientists have described more than 80,000 protein structures, most of which are now publicly available and provide important information to medical researchers searching for targets for drug therapy. However, a similar effort to catalogue RNA structures has mapped only a few hundred RNA molecules. As a result, the potential of RNA molecules has just barely been developed as targets for new therapeutics.

"To effectively target these molecules, researchers often need a three-dimensional picture of what they look like," says Nikolay Dokholyan, PhD, professor in the department of biochemistry and biophysics, and the project's co-leader.

"With Dr. Kevin Weeks' lab, we have developed a way to create a three-dimensional map of complex RNAs that are not amenable to study through other methods. It builds on information from a routine laboratory experiment, used in the past to evaluate RNA models from a qualitative standpoint. Our team has created a sophisticated quantitative model that uses this simple information to predict structures for large, complex RNA molecules, which have previously been beyond the reach of modeling techniques," he adds.

Dokholyan, who is a member of UNC Lineberger Comprehensive Cancer Center and director of the UNC Center for Computational and Systems Biology, hopes that the method will help researchers who are trying to target RNAs molecules to change cellular metabolism in a way that ultimately reduces the effects of cellular diseases like cancer. He notes, "Rational, cost-effective screening for small molecules requires a good understanding of the targeted structure. We hope that this method will open doors to new findings applicable to a wide range of human diseases."

Other members of the research team include Feng Ding, PhD, Research Assistant Professor of biochemistry and biophysics, Christopher Lavendar, a graduate student of in the department chemistry, and study co-leader Kevin Weeks, PhD, Kenan Distinguished Professor of Chemistry and UNC Lineberger member.

The research was funded by the National Institutes of Health and the University of North Carolina Research Council.

Ellen de Graffenreid | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: 3-D image Biochemistry RNA RNA molecule UNC protein structure

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>