Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

100-year-old specimens at California museum help determine when avian pox hit Galapagos

14.01.2011
3,607 finches and mockingbirds housed at the California Academy of Sciences provided critical data for research about the spread of disease in Darwin's famous islands

A research team from across the United States and Ecuador has pinpointed 1898 as the year the avipoxvirus, or avian pox, hit the Galapagos Islands and started infecting its birds. This estimation is vital to understanding avian diseases that affect today's Galapagos birds. The scientists' paper on the subject, "110 Years of Avipoxvirus on the Galapagos Islands," will be published on January 13 in PLoS ONE, an international, open-access science publication.

The research team, led by Dr. Patricia Parker of the University of Missouri–St. Louis, examined 3,607 finches and mockingbirds collected in the Galapagos between 1898 and 1906 that are currently held at the California Academy of Sciences in San Francisco, along with 266 birds collected in 1891 and 1897 held at the Zoologische Staatssammlung in Munich, Germany. The scientists inspected the birds for skin lesions associated with avian pox infection and found 226 candidates dating from 1898 or later. For a small subset of these (59 specimens), the scientists took tissue samples for further pathological studies. In the end, a total of 21 specimens scored positive for avipoxvirus using histology (tissue examination under a microscope) and genotyping (screening for viral DNA).

"Without museum collections, work like this would never be possible," said Dr. Jack Dumbacher, Curator of Ornithology at the California Academy of Sciences. "Because museum specimens include detailed collection date and location data, they can be used to study not only a particular species, but also historical events and environmental conditions. Without this library of specimens, we might never have learned when or how this potentially devastating disease made its way to Darwin's famous islands."
The Academy has a deeply rooted history of research in the Galapagos, where it helped to found the Charles Darwin Research Station at Academy Bay, as well as the Galapagos National Park. The museum sent its first expedition to these storied islands in 1905. For about a year, the Academy's team of scientists inventoried everything from plants, fossils, and birds that are now extinct to the iconic marine iguanas that still bask on coastal rocks. By the time the team returned to San Francisco, the 1906 earthquake and fire had destroyed most of the Academy's research collections, so the 70,000 scientific specimens collected during the expedition formed the basis for rebuilding the institution. Since then, the Academy has organized dozens of return trips and is now home to the world's largest collection of scientific specimens from the Galapagos. Most of the museum's current field work in the Galapagos focuses on the marine environment, where dozens of new species have been discovered in the last decade.

The PLoS ONE study is the latest example of how this invaluable collection continues to provide insight into evolutionary and ecological processes on the islands. According to the paper, the role of disease in regulating populations is controversial, partly owing to the absence of good disease records in historic wildlife populations. The authors hope to fill that void with the new approaches taken in their paper.

"The combination of an extensive museum collection and modern genetics and histology have allowed us to home in on the arrival date of an important virus that threatens today's populations of unique birds," said Parker, Professor of Zoological Studies at the University of Missouri–St. Louis and lead author on the paper. "We are all excited to not only have the arrival date estimate, but to have important insights into the role that humans have played (and still play) in spreading pathogens like this virus."

Parker and her colleagues note that while there have been no known extinctions of bird species on the Galapagos Islands as a whole, the extinction rate on individual islands is approximately 100 times higher since human colonization than before human arrival. The history of avipoxvirus on the Galapagos is an important data point for understanding this accelerated population-level extinction. The museum specimens demonstrate that shortly after its arrival, the virus was much more likely to be found on human-inhabited islands, suggesting that humans inadvertently helped it to spread.

"Now that we know that humans likely played a role in facilitating the spread of avian pox in the Galapagos, we'll be better equipped to develop policies designed to prevent further spread of the disease," says Dumbacher.

About the California Academy of Sciences

Founded in 1853, the Academy is an international center for scientific education and research and is at the forefront of efforts to understand and protect the diversity of Earth's living things. The Academy has a staff of over 50 professional educators and Ph.D.-level scientists, supported by more than 100 Research and Field Associates and over 300 Fellows. It houses 26 million biological, geological, and cultural specimens from around the world and conducts research in 11 scientific fields: anthropology, aquatic biology, botany, comparative genomics, entomology, geology, herpetology, ichthyology, invertebrate zoology, mammalogy, and ornithology. Visit research.calacademy.org.

Stephanie Stone | EurekAlert!
Further information:
http://www.calacademy.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>