Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

100-year-old specimens at California museum help determine when avian pox hit Galapagos

14.01.2011
3,607 finches and mockingbirds housed at the California Academy of Sciences provided critical data for research about the spread of disease in Darwin's famous islands

A research team from across the United States and Ecuador has pinpointed 1898 as the year the avipoxvirus, or avian pox, hit the Galapagos Islands and started infecting its birds. This estimation is vital to understanding avian diseases that affect today's Galapagos birds. The scientists' paper on the subject, "110 Years of Avipoxvirus on the Galapagos Islands," will be published on January 13 in PLoS ONE, an international, open-access science publication.

The research team, led by Dr. Patricia Parker of the University of Missouri–St. Louis, examined 3,607 finches and mockingbirds collected in the Galapagos between 1898 and 1906 that are currently held at the California Academy of Sciences in San Francisco, along with 266 birds collected in 1891 and 1897 held at the Zoologische Staatssammlung in Munich, Germany. The scientists inspected the birds for skin lesions associated with avian pox infection and found 226 candidates dating from 1898 or later. For a small subset of these (59 specimens), the scientists took tissue samples for further pathological studies. In the end, a total of 21 specimens scored positive for avipoxvirus using histology (tissue examination under a microscope) and genotyping (screening for viral DNA).

"Without museum collections, work like this would never be possible," said Dr. Jack Dumbacher, Curator of Ornithology at the California Academy of Sciences. "Because museum specimens include detailed collection date and location data, they can be used to study not only a particular species, but also historical events and environmental conditions. Without this library of specimens, we might never have learned when or how this potentially devastating disease made its way to Darwin's famous islands."
The Academy has a deeply rooted history of research in the Galapagos, where it helped to found the Charles Darwin Research Station at Academy Bay, as well as the Galapagos National Park. The museum sent its first expedition to these storied islands in 1905. For about a year, the Academy's team of scientists inventoried everything from plants, fossils, and birds that are now extinct to the iconic marine iguanas that still bask on coastal rocks. By the time the team returned to San Francisco, the 1906 earthquake and fire had destroyed most of the Academy's research collections, so the 70,000 scientific specimens collected during the expedition formed the basis for rebuilding the institution. Since then, the Academy has organized dozens of return trips and is now home to the world's largest collection of scientific specimens from the Galapagos. Most of the museum's current field work in the Galapagos focuses on the marine environment, where dozens of new species have been discovered in the last decade.

The PLoS ONE study is the latest example of how this invaluable collection continues to provide insight into evolutionary and ecological processes on the islands. According to the paper, the role of disease in regulating populations is controversial, partly owing to the absence of good disease records in historic wildlife populations. The authors hope to fill that void with the new approaches taken in their paper.

"The combination of an extensive museum collection and modern genetics and histology have allowed us to home in on the arrival date of an important virus that threatens today's populations of unique birds," said Parker, Professor of Zoological Studies at the University of Missouri–St. Louis and lead author on the paper. "We are all excited to not only have the arrival date estimate, but to have important insights into the role that humans have played (and still play) in spreading pathogens like this virus."

Parker and her colleagues note that while there have been no known extinctions of bird species on the Galapagos Islands as a whole, the extinction rate on individual islands is approximately 100 times higher since human colonization than before human arrival. The history of avipoxvirus on the Galapagos is an important data point for understanding this accelerated population-level extinction. The museum specimens demonstrate that shortly after its arrival, the virus was much more likely to be found on human-inhabited islands, suggesting that humans inadvertently helped it to spread.

"Now that we know that humans likely played a role in facilitating the spread of avian pox in the Galapagos, we'll be better equipped to develop policies designed to prevent further spread of the disease," says Dumbacher.

About the California Academy of Sciences

Founded in 1853, the Academy is an international center for scientific education and research and is at the forefront of efforts to understand and protect the diversity of Earth's living things. The Academy has a staff of over 50 professional educators and Ph.D.-level scientists, supported by more than 100 Research and Field Associates and over 300 Fellows. It houses 26 million biological, geological, and cultural specimens from around the world and conducts research in 11 scientific fields: anthropology, aquatic biology, botany, comparative genomics, entomology, geology, herpetology, ichthyology, invertebrate zoology, mammalogy, and ornithology. Visit research.calacademy.org.

Stephanie Stone | EurekAlert!
Further information:
http://www.calacademy.org

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>