Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1 small step for neurons, 1 giant leap for nerve cell repair

09.10.2009
Scientists create nerve cell connections in vitro using artificial substances, a major advance towards nerve cell repair

The repair of damaged nerve cells is a major problem in medicine today.

A new study by researchers at the Montreal NeurologicaI Institute and Hospital (The Neuro) and McGill University, is a significant advance towards a solution for neuronal repair. The study featured on the cover of the October 7 issue of Journal of Neuroscience, is the first to show that nerve cells will grow and make meaningful, functional contacts, or synapses - the specialized junctions through which neurons signal to each other - with an artificial component, in this case, plastic beads coated with a substance that encourages adhesion, and attracts the nerve cells.

"Many therapies, most still in the conceptual stage, are aimed at restoring the connection between the nerve cell and the severed nerve fibres that innervate a target tissue, typically muscle," says Dr. David Colman, Director of The Neuro and principal investigator in the study. "Traditional approaches to therapies would require the re-growth of a severed nerve fibre a distance of up to one meter in order to potentially restore function. The approach we are using however bypasses the need to force nerve cells to artificially grow these long distances, and eliminates the demand for two neurons to make a synapse, both of which are considerable obstacles to neuronal repair in a damaged system."

"We are tackling this problem in an entirely new way, as part of the McGill Program in NeuroEngineering," says Dr. Anna Lisa Lucido, who conducted research for the study as part of her PhD research at The Neuro and is currently a post-doctoral fellow at UCSF. "This program, spearheaded by Dr. Colman, is a multi-disciplinary consortium that brings together the knowledge, expertise and perspectives of 40 scientists from diverse fields to focus on the challenge of neuronal repair in the central nervous system. The approach we have taken is to help healthy nerve cells form functional contacts with artificial substrates in order to create a paradigm that can be adapted to model systems in which neurons are damaged. That approach will be combined with strategies to encourage the outgrowth of damaged neuronal branches through which these connections, or synapses, are formed. It's a challenging endeavour, but the ability to trigger connections to form on command is a promising start. Our ultimate goal is to create a combined platform in which damaged cells could be encouraged to both re-grow and re-establish their functional connections."

The synapses generated in this study are virtually identical to their natural counterparts except the 'receiving' side of the synapse is an artificial plastic rather than another nerve cell or the target tissue itself. This study is the first, using these particular devices, to show that adhesion is a fundamental first step in triggering synaptic assembly.

"Even though components of synapses have been induced in similar earlier studies, their functionality was not proven. In order to assess function - that is transmission of a signal from the synapse, we stimulated the nerve cells with electricity, sending the signal, an action potential, to the synapse. By artificially stimulating nerve cells in the presence of dyes, we could see that transmission had taken place as the dyes were taken up by the synapses."

"We believe that within the next five years we will have a fully functional device that will be able to directly convey natural nerve cell signals from the nerve cell itself to an artificial matrix containing a mini-computer that will communicate wirelessly with target tissues," says Dr. Colman. These results not only provide a model to understand how neurons are formed which can be employed in subsequent studies but, provides hope for those affected and potentially holds promise for the use of artificial substrates in the repair of damaged nerves.

About the Montreal Neurological Institute and Hospital
Celebrating 75 years
The Montreal Neurological Institute and Hospital (The Neuro) is a unique academic medical centre dedicated to neuroscience. The Neuro is a research and teaching institute of McGill University and forms the basis for the Neuroscience Mission of the McGill University Health Centre. Founded in 1934 by the renowned Dr. Wilder Penfield, The Neuro is recognized internationally for integrating research, compassionate patient care and advanced training, all key to advances in science and medicine. Neuro researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders.

Anita Kar | EurekAlert!
Further information:
http://www.mcgill.ca
http://www.mni.mcgill.ca

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>