Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than 1: Long-reigning microbe controlling ocean nitrogen shares the throne

26.02.2010
Novel species found to be more widely distributed in world's seas

Marine scientists long believed that a microbe called Trichodesmium, a member of a group called the cyanobacteria, reigned over the ocean's nitrogen budget.

New research results reported on-line today in a paper in Science Express show that Trichodesmium may have to share its nitrogen-fixing throne: two others of its kind, small spherical species of nitrogen-fixing cyanobacteria called UCYN-A and Crocosphaera watsonii, are also abundant in the oceans.

One of them, UCYN-A, is more widely distributed than Trichodesmium, and can live in cooler waters.

Different nitrogen-fixing cyanobacteria, scientists have discovered, have varying preferences for water temperature and other environmental factors.

Pia Moisander and Jon Zehr of the University of California at Santa Cruz and their co-authors showed that actively nitrogen-fixing UCYN-A "can be found in great abundance at higher latitudes and deeper waters than Trichodesmium," says Moisander.

"Where Trichodesmium might be thought of as a warm-water microbe, UCYN-A likes it cooler," says Zehr. "This has far-reaching implications for the geographic distribution of the ocean's 'nitrogen fixers,' and for the process of nitrogen fixation itself."

According to co-author Joseph Montoya of the Georgia Institute of Technology, "we're now beginning to develop an appreciation for the biogeography of marine nitrogen fixation, and the broad range of oceanic habitats where nitrogen fixation makes a significant contribution to the overall nitrogen budget."

Most previous estimates of global nitrogen fixation were based on distributions of or factors that control the growth of Trichodesmium.

"The results of this study," says David Garrison, program director in the National Science Foundation (NSF)'s Directorate for Geosciences, "show that these novel microbes are found in the world's oceans in a distribution analogous to that of non-nitrogen-fixing cyanobacteria, which are widespread."

The research was also supported by NSF's Directorate for Biological Sciences and an NSF Science and Technology Center called C-MORE, the Center for Microbial Oceanography: Research and Education.

Trichodesmium, as well as UCYN-A and Crocosphaera watsonii, "fix" nitrogen in the seas, taking nitrogen gas from the air we breathe and converting it to chemical forms that other microorganisms can use to power their cellular machinery.

Nitrogen-fixing microorganisms are the key to the productivity of the oceans. Growth of microbes at the base of the food chain is dependent on nutrients like nitrogen, in the same way that agriculture on land depends on such nutrients.

Microorganisms that fix nitrogen play a central role, says Zehr, in the "vertical downward flux of organic matter to the deep ocean."

Life forms that are among our planet's smallest, he says, play a very large role. Through a series of steps in the nitrogen fixation process, they sequester carbon from the atmosphere, important in controlling Earth's climate.

Other authors of the paper are Roxanne Beinart and Ian Hewson of the University of California at Santa Cruz; Angelicque White of Oregon State University; Kenneth Johnson of the Monterey Bay Aquarium Research Institute; and Craig Carlson of the University of California at Santa Barbara.

The research received additional funding from the Gordon and Betty Moore Foundation.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

50th Anniversary at JULABO GmbH

23.10.2017 | Press release

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>