Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than 1: Long-reigning microbe controlling ocean nitrogen shares the throne

26.02.2010
Novel species found to be more widely distributed in world's seas

Marine scientists long believed that a microbe called Trichodesmium, a member of a group called the cyanobacteria, reigned over the ocean's nitrogen budget.

New research results reported on-line today in a paper in Science Express show that Trichodesmium may have to share its nitrogen-fixing throne: two others of its kind, small spherical species of nitrogen-fixing cyanobacteria called UCYN-A and Crocosphaera watsonii, are also abundant in the oceans.

One of them, UCYN-A, is more widely distributed than Trichodesmium, and can live in cooler waters.

Different nitrogen-fixing cyanobacteria, scientists have discovered, have varying preferences for water temperature and other environmental factors.

Pia Moisander and Jon Zehr of the University of California at Santa Cruz and their co-authors showed that actively nitrogen-fixing UCYN-A "can be found in great abundance at higher latitudes and deeper waters than Trichodesmium," says Moisander.

"Where Trichodesmium might be thought of as a warm-water microbe, UCYN-A likes it cooler," says Zehr. "This has far-reaching implications for the geographic distribution of the ocean's 'nitrogen fixers,' and for the process of nitrogen fixation itself."

According to co-author Joseph Montoya of the Georgia Institute of Technology, "we're now beginning to develop an appreciation for the biogeography of marine nitrogen fixation, and the broad range of oceanic habitats where nitrogen fixation makes a significant contribution to the overall nitrogen budget."

Most previous estimates of global nitrogen fixation were based on distributions of or factors that control the growth of Trichodesmium.

"The results of this study," says David Garrison, program director in the National Science Foundation (NSF)'s Directorate for Geosciences, "show that these novel microbes are found in the world's oceans in a distribution analogous to that of non-nitrogen-fixing cyanobacteria, which are widespread."

The research was also supported by NSF's Directorate for Biological Sciences and an NSF Science and Technology Center called C-MORE, the Center for Microbial Oceanography: Research and Education.

Trichodesmium, as well as UCYN-A and Crocosphaera watsonii, "fix" nitrogen in the seas, taking nitrogen gas from the air we breathe and converting it to chemical forms that other microorganisms can use to power their cellular machinery.

Nitrogen-fixing microorganisms are the key to the productivity of the oceans. Growth of microbes at the base of the food chain is dependent on nutrients like nitrogen, in the same way that agriculture on land depends on such nutrients.

Microorganisms that fix nitrogen play a central role, says Zehr, in the "vertical downward flux of organic matter to the deep ocean."

Life forms that are among our planet's smallest, he says, play a very large role. Through a series of steps in the nitrogen fixation process, they sequester carbon from the atmosphere, important in controlling Earth's climate.

Other authors of the paper are Roxanne Beinart and Ian Hewson of the University of California at Santa Cruz; Angelicque White of Oregon State University; Kenneth Johnson of the Monterey Bay Aquarium Research Institute; and Craig Carlson of the University of California at Santa Barbara.

The research received additional funding from the Gordon and Betty Moore Foundation.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>