Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than 1: Long-reigning microbe controlling ocean nitrogen shares the throne

26.02.2010
Novel species found to be more widely distributed in world's seas

Marine scientists long believed that a microbe called Trichodesmium, a member of a group called the cyanobacteria, reigned over the ocean's nitrogen budget.

New research results reported on-line today in a paper in Science Express show that Trichodesmium may have to share its nitrogen-fixing throne: two others of its kind, small spherical species of nitrogen-fixing cyanobacteria called UCYN-A and Crocosphaera watsonii, are also abundant in the oceans.

One of them, UCYN-A, is more widely distributed than Trichodesmium, and can live in cooler waters.

Different nitrogen-fixing cyanobacteria, scientists have discovered, have varying preferences for water temperature and other environmental factors.

Pia Moisander and Jon Zehr of the University of California at Santa Cruz and their co-authors showed that actively nitrogen-fixing UCYN-A "can be found in great abundance at higher latitudes and deeper waters than Trichodesmium," says Moisander.

"Where Trichodesmium might be thought of as a warm-water microbe, UCYN-A likes it cooler," says Zehr. "This has far-reaching implications for the geographic distribution of the ocean's 'nitrogen fixers,' and for the process of nitrogen fixation itself."

According to co-author Joseph Montoya of the Georgia Institute of Technology, "we're now beginning to develop an appreciation for the biogeography of marine nitrogen fixation, and the broad range of oceanic habitats where nitrogen fixation makes a significant contribution to the overall nitrogen budget."

Most previous estimates of global nitrogen fixation were based on distributions of or factors that control the growth of Trichodesmium.

"The results of this study," says David Garrison, program director in the National Science Foundation (NSF)'s Directorate for Geosciences, "show that these novel microbes are found in the world's oceans in a distribution analogous to that of non-nitrogen-fixing cyanobacteria, which are widespread."

The research was also supported by NSF's Directorate for Biological Sciences and an NSF Science and Technology Center called C-MORE, the Center for Microbial Oceanography: Research and Education.

Trichodesmium, as well as UCYN-A and Crocosphaera watsonii, "fix" nitrogen in the seas, taking nitrogen gas from the air we breathe and converting it to chemical forms that other microorganisms can use to power their cellular machinery.

Nitrogen-fixing microorganisms are the key to the productivity of the oceans. Growth of microbes at the base of the food chain is dependent on nutrients like nitrogen, in the same way that agriculture on land depends on such nutrients.

Microorganisms that fix nitrogen play a central role, says Zehr, in the "vertical downward flux of organic matter to the deep ocean."

Life forms that are among our planet's smallest, he says, play a very large role. Through a series of steps in the nitrogen fixation process, they sequester carbon from the atmosphere, important in controlling Earth's climate.

Other authors of the paper are Roxanne Beinart and Ian Hewson of the University of California at Santa Cruz; Angelicque White of Oregon State University; Kenneth Johnson of the Monterey Bay Aquarium Research Institute; and Craig Carlson of the University of California at Santa Barbara.

The research received additional funding from the Gordon and Betty Moore Foundation.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>