Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How 'Secondary' Sex Characters Can Drive the Origin of Species

27.08.2008
The ostentatious, sometimes bizarre qualities that improve a creature's chances of finding a mate may also drive the reproductive separation of populations and the evolution of new species, say two Indiana University Bloomington biologists.

In the September 2008 issue of Evolution (now online), Armin Moczek and Harald Parzer examine males from four geographically separated populations of the horned beetle species Onthophagus taurus. The beetles have diverged significantly in the size of the male copulatory organ, and natural selection operating on the other end of the animal -- horns atop the beetles' heads -- seems to be driving it.

"Biologists have known that in these beetles there is an investment trade-off between secondary sexual characters and primary sexual characters," Moczek said. "As horns get bigger, copulatory organs get smaller, or vice versa. What was not known was how frequently and how fast this can occur in nature, and whether this can drive the evolution of new species."

Structures directly involved in mating are known as primary sexual characters, whereas combat structures like horns -- or seductive attributes like a cardinal's vibrant plumage or a bullfrog's deeply resonant baritone -- are known as secondary sexual characters.

Evolutionary biologists believe changes in copulatory organ size and shape can spur speciation by making individuals from different populations sexually incompatible.

Native to Italy, O. taurus exists in other parts of the world only because of recent human activity. This means, Moczek and Parzer say, that the marked divergences they observed in O. taurus's horn and copulatory organ size must have occurred over an extremely short period of time -- 50 years or less.

Despite what many of us are led to believe, variation in male copulatory organ size within species tends to be very low, humans and beetles included. Yet the four O. taurus populations Moczek and Parzer studied in the U.S. (North Carolina), Italy, and western and eastern Australia, exhibit substantial changes in both horn and genitalia length -- as much as 3.5 times, in terms of an "investment" index the scientists devised that takes body size into account.

The scientists examined 10 other Onthophagus species, and as expected, they found vast differences between the species regarding horn and male copulatory organ size. Moczek says this suggests that trade-offs between primary and secondary sexual traits continue to shape the way species diverge well after speciation has occurred.

The speed and magnitude of divergence within O. taurus presents something of a paradox. How is it that copulatory organ size can be so rigorously maintained within the populations of a single species, yet appear so restless to change?

"In terms of the integrity of a species, it's important for these things not to change too much," Moczek explains. "So there is a lot of evidence suggesting that within species or within the populations of species, natural selection maintains genital characters. But if these primary sex characters are linked to other characters that can change readily, then you've got what we think is a very exciting mechanism that could prime populations for reproductive isolation."

Horn length and shape can change for many reasons, Moczek says. Among densely populated species, fighting (which favors large horns) may not be an effective strategy for winning mates. As combative males fight each other, a diminutive, smaller-horned male could simply employ a sneaking strategy to gain access to unguarded females. Under these circumstances, reduced investment in horns seems to result in larger copulatory organs. Alternately, in lower density populations, most male beetles spend a great deal of time fighting. Longer, bigger horns could serve these males well -- and also lead to smaller genitalia.

"If this is all it takes to change genitalia, it may be easier to make new species than we thought," Moczek said.

The notion that genital size is related to the origin of species is not new. But how they are related has perplexed evolutionary biologists. The individuals of most species do not choose mates according to the size and shape of genitalia. Indeed, genitalia may not be relevant until the latter stages of courtship, if at all.

An early "lock and key" model of reproductive isolation was first proposed by L. Dufour in 1844 to explain why some pairs of species, outwardly identical in every way, are unable to mate.

Research discussed in the Evolution paper was supported by grants from the National Science Foundation.

David Bricker | Newswise Science News
Further information:
http://www.indiana.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>