Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How 'Secondary' Sex Characters Can Drive the Origin of Species

The ostentatious, sometimes bizarre qualities that improve a creature's chances of finding a mate may also drive the reproductive separation of populations and the evolution of new species, say two Indiana University Bloomington biologists.

In the September 2008 issue of Evolution (now online), Armin Moczek and Harald Parzer examine males from four geographically separated populations of the horned beetle species Onthophagus taurus. The beetles have diverged significantly in the size of the male copulatory organ, and natural selection operating on the other end of the animal -- horns atop the beetles' heads -- seems to be driving it.

"Biologists have known that in these beetles there is an investment trade-off between secondary sexual characters and primary sexual characters," Moczek said. "As horns get bigger, copulatory organs get smaller, or vice versa. What was not known was how frequently and how fast this can occur in nature, and whether this can drive the evolution of new species."

Structures directly involved in mating are known as primary sexual characters, whereas combat structures like horns -- or seductive attributes like a cardinal's vibrant plumage or a bullfrog's deeply resonant baritone -- are known as secondary sexual characters.

Evolutionary biologists believe changes in copulatory organ size and shape can spur speciation by making individuals from different populations sexually incompatible.

Native to Italy, O. taurus exists in other parts of the world only because of recent human activity. This means, Moczek and Parzer say, that the marked divergences they observed in O. taurus's horn and copulatory organ size must have occurred over an extremely short period of time -- 50 years or less.

Despite what many of us are led to believe, variation in male copulatory organ size within species tends to be very low, humans and beetles included. Yet the four O. taurus populations Moczek and Parzer studied in the U.S. (North Carolina), Italy, and western and eastern Australia, exhibit substantial changes in both horn and genitalia length -- as much as 3.5 times, in terms of an "investment" index the scientists devised that takes body size into account.

The scientists examined 10 other Onthophagus species, and as expected, they found vast differences between the species regarding horn and male copulatory organ size. Moczek says this suggests that trade-offs between primary and secondary sexual traits continue to shape the way species diverge well after speciation has occurred.

The speed and magnitude of divergence within O. taurus presents something of a paradox. How is it that copulatory organ size can be so rigorously maintained within the populations of a single species, yet appear so restless to change?

"In terms of the integrity of a species, it's important for these things not to change too much," Moczek explains. "So there is a lot of evidence suggesting that within species or within the populations of species, natural selection maintains genital characters. But if these primary sex characters are linked to other characters that can change readily, then you've got what we think is a very exciting mechanism that could prime populations for reproductive isolation."

Horn length and shape can change for many reasons, Moczek says. Among densely populated species, fighting (which favors large horns) may not be an effective strategy for winning mates. As combative males fight each other, a diminutive, smaller-horned male could simply employ a sneaking strategy to gain access to unguarded females. Under these circumstances, reduced investment in horns seems to result in larger copulatory organs. Alternately, in lower density populations, most male beetles spend a great deal of time fighting. Longer, bigger horns could serve these males well -- and also lead to smaller genitalia.

"If this is all it takes to change genitalia, it may be easier to make new species than we thought," Moczek said.

The notion that genital size is related to the origin of species is not new. But how they are related has perplexed evolutionary biologists. The individuals of most species do not choose mates according to the size and shape of genitalia. Indeed, genitalia may not be relevant until the latter stages of courtship, if at all.

An early "lock and key" model of reproductive isolation was first proposed by L. Dufour in 1844 to explain why some pairs of species, outwardly identical in every way, are unable to mate.

Research discussed in the Evolution paper was supported by grants from the National Science Foundation.

David Bricker | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>