Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 'schizophrenia gene' prompts researchers to test potential drug target

28.10.2009
Johns Hopkins scientists report having used a commercially available drug to successfully “rescue” animal brain cells that they had intentionally damaged by manipulating a newly discovered gene that links susceptibility genes for schizophrenia and autism.

The rescue, described as “surprisingly complete” by the researchers, was accomplished with rapamycin, a drug known to act on a protein called mTOR whose role involves the production of other proteins.

The idea to test this drug’s effectiveness at rescuing impaired nerve cells occurred to the team as a result of having discovered a new gene that appears to act in concert with two previously identified schizophrenia susceptibility genes, one of which is involved in the activation of the protein mTOR.

This piecing together of multiple genes adds support for the idea that susceptibility to schizophrenia and autism may have common genetic fingerprints, according to the researchers.

In a report on the work published in the Sept. 24 issue of the journal Neuron, the scientists are careful to say that the genes in question are not the cause of schizophrenia or any other brain/mind disorder in humans. However, these genes do appear to serve as a blueprint for proteins that consistently pop up in a range of mental illnesses in people.

The newfound gene, dubbed KIAA1212, serves as a bridge linking two schizophrenia genes: DISC1 and AKT. Suspecting KIAA1212 as one of many potential binding partners interacting with DISC1, whose name is an acronym for “Disrupted-in-Schizophrenia,” the researchers genetically shut down the production of DISC1 proteins in newly born neurons in the hippocampus region of an adult mouse brain. The hippocampus contains a niche where native stem cells give rise to fully developed new neurons. The idea was to deliberately cause these cells to malfunction and then watch what happened.

The scientists found that the newborn neurons were most noticeably defective 14 days after DISC1 suppression and that they were defective in a variety of ways. By manipulating AKT production, or altering KIAA1212, they discovered the very same abnormalities as with DISC1 deficiency, concluding that KIAA1212 is in the same signaling pathway as DISC1 and AKT.

Because mTOR is a well-known downstream effector of AKT, they treated the adult mice harboring those abnormal neurons with rapamycin, a drug known to alleviate the effects of a faulty AKT pathway. It effectively “rescued” the neurons from their defects.

“Our discoveries give us more of the information we need to understand the function of genes associated with psychological diseases,” says Guo-li Ming, M.D., Ph.D., an associate professor of neurology and neuroscience in the Institute for Cell Engineering at the Johns Hopkins University School of Medicine. “The next step is to create a good animal model that would allow us to test whether candidate drugs will reverse not only the irregularities of brain cells with deficiency of these genes, but also behaviors.”

The new neurons with alterations of DISC1, KIAA1212 or AKT in the brains of the Rapamycin-treated mice developed normally, says Hongjun Song, Ph.D., an associate professor of Neurology in the Institute for Cell Engineering at the Johns Hopkins University School of Medicine, who collaborated in the research. “What was amazing to us is how potent the drug is, at least on the cellular level,” he says. “A number of the neurons’ developmental defects — from enlarged cell size to the misplacement of cell localization and abnormal neuronal processes involved in receiving and sending messages — were corrected by this one drug.”

This study was supported by the National Institutes of Health, the McKnight Foundation, NARSAD, the International Mental Health Research Organization, the Maryland Stem Cell Research Fund, and the March of Dimes.

Authors on the paper, in addition to Ming and Song, are Ju Young Kim, Xin Duan, Cindy Y. Liu, Mi-Hyeon Jang, Junjie U. Guo, Nattapol Pow-anpongkul and Eunchai Kang, all of Johns Hopkins.

On the Web:
Neuron: http://www.cell.com/neuron/
Guoli Ming: http://neuroscience.jhu.edu/GuoliMing.php
Hungjun Song: http://www.hopkins-ice.org/neuro/int/song.html

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>