Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Let's just harvest invasive species -- problem solved?

21.11.2013
Although invasive Asian carp have been successfully harvested and served on a dinner plate, harvesting invasive plants to convert into ethanol isn't as easy.

According to a recent study at the University of Illinois, harvesting invasive plants for use as biofuels may sound like a great idea, but the reality poses numerous obstacles and is too expensive to consider, at least with the current ethanol pathways.


This is Arundo donax, invading along the Santa Ana River in Riversie, Calif.

Credit: Lauren Quinn

"When the topic of potential invasion by non-native biofuel crops has been raised at conferences I've attended, the ecologists in the room have suggested we use biomass from existing invaders instead," said Lauren Quinn, an invasive plant ecologist in U of I's Energy Biosciences Institute.

"They worry about the potential deployment of tens of thousands of acres of known invaders like Arundo donax for ethanol production. They'd say, 'we have all of these invasive plants. Let's just harvest them instead of planting new ones!' But when I analyzed the idea from a broader perspective, it just didn't add up."

Quinn explored the idea of harvesting invasive plants from many angles but said that the overarching problem is the non-sustainability of the profit stream. "From a business person's perspective, it just doesn't function like a typical crop that is harvested and then replanted or harvested again the following year," she said. "Here, land managers are trying to get rid of an invasive plant using an array of methods, including herbicides, so there wouldn't necessarily be multiple years of harvest."

Other obstacles Quinn examined are the need for specially designed harvesting equipment, the development of new conversion technologies for these unique plants, and even the problems associated with transportation.

"One of the biggest issues is the absence of appropriate biorefineries in any given area," Quinn said. "If there isn't one nearby, growers would have to transport the material long distances, and that's expensive."

Perhaps more important, Quinn discussed the issues with the high variability of the cell wall composition across different species. "Most existing or planned biorefineries can process only a single, or at best, a small handful of conventional feedstocks, and are not likely to be flexible enough to handle the variety of material brought in from invasive plant control projects," Quinn said. "The breakdown and processing of plant tissues to ethanol requires different temperatures, enzymes, and equipment that are all highly specific. The proportion of cellulose, lignin, and other fractionation products can differ even within a single genotype if it is grown in multiple regions so the variations between completely different plant types would be an even greater hurdle."

Quinn isn't discounting the idea of harvesting invasive plants, however. She encourages control of invasive populations and subsequent ecological restoration but does not believe that invasive biomass can replace dedicated energy crops at present.

"One day there might be a pathway toward ethanol conversion of invasive biomass," Quinn said. "But until we do get to that point, there may be possibilities to use invasive plants as alternative sources of energy, like combustion for electricity. Invasive biomass could drop into the existing supply of biomass being co-fired with coal in the already huge network of electrical power plants across the country. That would eliminate the technological barriers that conversion to ethanol presents.

"I'm not saying that we shouldn't continue to look at ethanol conversion processes eventually, I'm just saying that right now, it doesn't seem to make a lot of economic sense."

"Why not harvest existing invaders for bioethanol?" was published in a recent issue of Biological Invasions. A. Bryan Endres and Thomas B. Voigt contributed. The research was funded by the Energy Biosciences Institute.

The Energy Biosciences Institute, funded by the energy company BP, is a research collaboration that includes the University of Illinois, the University of California at Berkeley, and Lawrence Berkeley National Laboratory. It is dedicated to applying the biological sciences to the challenges of producing sustainable, renewable energy for the world.

Debra Levey Larson | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>