Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Let's just harvest invasive species -- problem solved?

21.11.2013
Although invasive Asian carp have been successfully harvested and served on a dinner plate, harvesting invasive plants to convert into ethanol isn't as easy.

According to a recent study at the University of Illinois, harvesting invasive plants for use as biofuels may sound like a great idea, but the reality poses numerous obstacles and is too expensive to consider, at least with the current ethanol pathways.


This is Arundo donax, invading along the Santa Ana River in Riversie, Calif.

Credit: Lauren Quinn

"When the topic of potential invasion by non-native biofuel crops has been raised at conferences I've attended, the ecologists in the room have suggested we use biomass from existing invaders instead," said Lauren Quinn, an invasive plant ecologist in U of I's Energy Biosciences Institute.

"They worry about the potential deployment of tens of thousands of acres of known invaders like Arundo donax for ethanol production. They'd say, 'we have all of these invasive plants. Let's just harvest them instead of planting new ones!' But when I analyzed the idea from a broader perspective, it just didn't add up."

Quinn explored the idea of harvesting invasive plants from many angles but said that the overarching problem is the non-sustainability of the profit stream. "From a business person's perspective, it just doesn't function like a typical crop that is harvested and then replanted or harvested again the following year," she said. "Here, land managers are trying to get rid of an invasive plant using an array of methods, including herbicides, so there wouldn't necessarily be multiple years of harvest."

Other obstacles Quinn examined are the need for specially designed harvesting equipment, the development of new conversion technologies for these unique plants, and even the problems associated with transportation.

"One of the biggest issues is the absence of appropriate biorefineries in any given area," Quinn said. "If there isn't one nearby, growers would have to transport the material long distances, and that's expensive."

Perhaps more important, Quinn discussed the issues with the high variability of the cell wall composition across different species. "Most existing or planned biorefineries can process only a single, or at best, a small handful of conventional feedstocks, and are not likely to be flexible enough to handle the variety of material brought in from invasive plant control projects," Quinn said. "The breakdown and processing of plant tissues to ethanol requires different temperatures, enzymes, and equipment that are all highly specific. The proportion of cellulose, lignin, and other fractionation products can differ even within a single genotype if it is grown in multiple regions so the variations between completely different plant types would be an even greater hurdle."

Quinn isn't discounting the idea of harvesting invasive plants, however. She encourages control of invasive populations and subsequent ecological restoration but does not believe that invasive biomass can replace dedicated energy crops at present.

"One day there might be a pathway toward ethanol conversion of invasive biomass," Quinn said. "But until we do get to that point, there may be possibilities to use invasive plants as alternative sources of energy, like combustion for electricity. Invasive biomass could drop into the existing supply of biomass being co-fired with coal in the already huge network of electrical power plants across the country. That would eliminate the technological barriers that conversion to ethanol presents.

"I'm not saying that we shouldn't continue to look at ethanol conversion processes eventually, I'm just saying that right now, it doesn't seem to make a lot of economic sense."

"Why not harvest existing invaders for bioethanol?" was published in a recent issue of Biological Invasions. A. Bryan Endres and Thomas B. Voigt contributed. The research was funded by the Energy Biosciences Institute.

The Energy Biosciences Institute, funded by the energy company BP, is a research collaboration that includes the University of Illinois, the University of California at Berkeley, and Lawrence Berkeley National Laboratory. It is dedicated to applying the biological sciences to the challenges of producing sustainable, renewable energy for the world.

Debra Levey Larson | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht The body's street sweepers
18.12.2017 | Ludwig-Maximilians-Universität München

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>