Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Let's just harvest invasive species -- problem solved?

21.11.2013
Although invasive Asian carp have been successfully harvested and served on a dinner plate, harvesting invasive plants to convert into ethanol isn't as easy.

According to a recent study at the University of Illinois, harvesting invasive plants for use as biofuels may sound like a great idea, but the reality poses numerous obstacles and is too expensive to consider, at least with the current ethanol pathways.


This is Arundo donax, invading along the Santa Ana River in Riversie, Calif.

Credit: Lauren Quinn

"When the topic of potential invasion by non-native biofuel crops has been raised at conferences I've attended, the ecologists in the room have suggested we use biomass from existing invaders instead," said Lauren Quinn, an invasive plant ecologist in U of I's Energy Biosciences Institute.

"They worry about the potential deployment of tens of thousands of acres of known invaders like Arundo donax for ethanol production. They'd say, 'we have all of these invasive plants. Let's just harvest them instead of planting new ones!' But when I analyzed the idea from a broader perspective, it just didn't add up."

Quinn explored the idea of harvesting invasive plants from many angles but said that the overarching problem is the non-sustainability of the profit stream. "From a business person's perspective, it just doesn't function like a typical crop that is harvested and then replanted or harvested again the following year," she said. "Here, land managers are trying to get rid of an invasive plant using an array of methods, including herbicides, so there wouldn't necessarily be multiple years of harvest."

Other obstacles Quinn examined are the need for specially designed harvesting equipment, the development of new conversion technologies for these unique plants, and even the problems associated with transportation.

"One of the biggest issues is the absence of appropriate biorefineries in any given area," Quinn said. "If there isn't one nearby, growers would have to transport the material long distances, and that's expensive."

Perhaps more important, Quinn discussed the issues with the high variability of the cell wall composition across different species. "Most existing or planned biorefineries can process only a single, or at best, a small handful of conventional feedstocks, and are not likely to be flexible enough to handle the variety of material brought in from invasive plant control projects," Quinn said. "The breakdown and processing of plant tissues to ethanol requires different temperatures, enzymes, and equipment that are all highly specific. The proportion of cellulose, lignin, and other fractionation products can differ even within a single genotype if it is grown in multiple regions so the variations between completely different plant types would be an even greater hurdle."

Quinn isn't discounting the idea of harvesting invasive plants, however. She encourages control of invasive populations and subsequent ecological restoration but does not believe that invasive biomass can replace dedicated energy crops at present.

"One day there might be a pathway toward ethanol conversion of invasive biomass," Quinn said. "But until we do get to that point, there may be possibilities to use invasive plants as alternative sources of energy, like combustion for electricity. Invasive biomass could drop into the existing supply of biomass being co-fired with coal in the already huge network of electrical power plants across the country. That would eliminate the technological barriers that conversion to ethanol presents.

"I'm not saying that we shouldn't continue to look at ethanol conversion processes eventually, I'm just saying that right now, it doesn't seem to make a lot of economic sense."

"Why not harvest existing invaders for bioethanol?" was published in a recent issue of Biological Invasions. A. Bryan Endres and Thomas B. Voigt contributed. The research was funded by the Energy Biosciences Institute.

The Energy Biosciences Institute, funded by the energy company BP, is a research collaboration that includes the University of Illinois, the University of California at Berkeley, and Lawrence Berkeley National Laboratory. It is dedicated to applying the biological sciences to the challenges of producing sustainable, renewable energy for the world.

Debra Levey Larson | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>