Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It's good to have a shady side: sun and shade leaves play different roles in tree canopies

01.04.2011
'Outer' tree canopy leaves influence the sunlight reaching inner canopy leaves by changing their shape, says a new study.

The shape and physiology of leaves within the tree canopy is not constant, and can vary depending on their position within the tree crown. This phenomenon is expected to have important consequences for how trees cope with stress and use resources.

A new study describes how the leaves in the outer canopy of olive trees can influence the light environment within the canopy by changing their shape, as more elongated leaves resulted in higher levels of solar radiation inside the crown.

Author Rafael Rubio de Casas and colleagues observed that inner canopy leaves appear to be particularly adapted to the use of diffuse solar radiation, which is more constant than direct radiation. They propose that outer canopy leaves change not only to maximize their own performance, but also to create a beneficial environment for the inner canopy leaves. They also suggest that leaves in various positions of the canopy can use different types of solar radiation for photosynthesis and operate at different time windows. Exposed leaves are expected to use direct solar radiation and be more active when the sun is close to the horizon, while shaded leaves specialize in the capture of diffuse radiation and are more active when the sun is higher.

De Casas and colleagues feel that their work shows a novel and heretofore unexplored integrated function of leaves that could have substantial ecological importance.

The findings appear in the March 25 issue of Functional Ecology.

CITATION: Rubio de Casas, R. (2011). "Sun and shade leaves of Olea Europaea respond differently to plant size, light availability and genetic variation." Functional Ecology. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2435.2011.01851.x/abstract

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Rafael Rubio de Casas | EurekAlert!
Further information:
http://www.nescent.org

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>