Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Pulverized' Chromosomes Linked to Cancer?

23.01.2012
They are the Robinson Crusoes of the intracellular world -- lone chromosomes, whole and hardy, stranded outside the nucleus where their fellow chromosomes reside. Such castaways, each confined to its own "micronucleus," are often found in cancer cells, but scientists haven't known what role, if any, they play in the cancer process.

In a paper published online on Jan. 18 by the journal Nature, Dana-Farber Cancer Institute researchers have mapped out a mechanism by which micronuclei could potentially disrupt the chromosomes within them and produce cancer-causing gene mutations. The findings may point to a vulnerability in cancer cells that could be attacked by new therapies.

"The most common genetic change in cancer is the presence of an incorrect number of intact chromosomes within cancer cells -- a condition known as aneuploidy," says Dana-Farber's David Pellman, MD, the study's senior author. "The significance of aneuploidy has been hard to pin down, however, because little is known about how it might trigger tumors. In contrast, the mechanism by which DNA damage and broken chromosomes cause cancer is well established -- by altering cancer genes in a way that spurs runaway cell division.

"The new study demonstrates one possible chain of events by which aneuploidy and specifically 'exiled' chromosomes could lead to cancer-causing mutations, with potential implications for cancer prevention and treatment," says Pellman, who is a Howard Hughes Medical Institute investigator and the Margaret M. Dyson Professor of Pediatric Oncology at Dana-Farber, Children's Hospital Boston and Harvard Medical School.

Whole chromosomes can end up outside the nucleus as a result of a glitch in cell division. In normal division, a cell duplicates its chromosomes and dispatches them to the newly forming daughter cells: the original set to one daughter, the twin set to the other. For a variety of reasons, the chromosomes sometimes aren't allocated evenly -- one daughter receives an extra one, the other is short one. Unlike the rest of the chromosomes, these stragglers sometimes don't make it to the nucleus. Instead, they're marooned elsewhere within the cell and become wrapped in their own membrane, forming a micronucleus.

"In some respects, micronuclei are similar to primary nuclei," Pellman remarks, "but much about their function and composition is unknown. Previous studies differ on whether micronuclei replicate or repair their chromosomes as normal nuclei do. The ultimate fate of these chromosomes is unclear as well: Are they passed on to daughter cells during cell division or are they somehow eliminated as division proceeds?"

One clue that odd-man-out chromosomes themselves may be subject to damage -- and therefore be involved in cancer -- emerged from Pellman's previous research into aneuploidy. "We found that cancer cells generated from cells with micronuclei also have a great deal of chromosome breakage," Pellman explains. But researchers didn't know if this was a sign of connection or of coincidence.

Another clue came from a recently discovered phenomenon called "chromothripsis," in which one chromosome of a cancer cell shows massive amounts of breakage and rearrangement, while the remainder of the genome is largely intact. "That finding leapt off the page of these studies -- that such extensive damage could be limited to a single chromosome or single arm of a chromosome," Pellman says. "We wondered if the physical isolation of chromosomes in micronuclei could explain this kind of highly localized chromosome damage."

To find out, Karen Crasta, PhD, of Pellman's lab and the study's lead author, used a confocal microscope to observe dividing cells with micronuclei. She found that while micronuclei do form duplicate copies of their chromosomes, the process is bungled in two respects. First, it is inefficient: part of the chromosome is replicated and part isn't, leading to chromosome damage. Second, it is out of sync: the micronucleus keeps trying to replicate its chromosomes long after replication of the other chromosomes was completed. For cell division to be successful, every step of the process must occur in the proper order, at the proper time. In fact, when study co-author Regina Dagher directly analyzed the structure of the late-replicating chromosomes, she found them to be smashed to bits -- exactly what was predicted as the first step in chromothripsis.

The final piece of the puzzle came when Pellman's colleague Neil Ganem, PhD, examined what happens to these pulverized fragments, using an imaging trick that marked the chromosome in the micronucleus with its own color.

"It has been theorized that micronuclei are garbage disposals for chromosomes that the cell doesn't need anymore," Pellman comments. "If that were true, the smashed pieces would be discarded or digested, but we found that, a third of the time, they're donated to one of the daughter cells and therefore cold be incorporated into that cell's genome.

Pellman says that the findings suggest that, unexpectedly, whole chromosome aneuploidy might promote cancer in a very similar way to other kinds of genomic alterations. The key event may be mutations in oncogenes and tumor suppressors. This mechanism may also explain how cancer cells acquire more than one such mutation at a time.

"Although chromothripsis occurs in only a few percent of human cancers, our findings suggest that it might be an extreme instance of a kind of chromosome damage that could be much more common," says Pellman, who adds that accelerating this process in cancer cells, thus generating so many mutations that the cells die, may represent a possible strategy for new therapies against certain tumors.

The research was supported by the National Institutes of Health, the Howard Hughes Medical Institute, and the Leukemia and Lymphoma Society.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding. Follow Dana-Farber on Twitter: @danafarber and Facebook: www.facebook.com/danafarbercancerinstitute

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>