Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Psychedelic' maize may help increase crop and biofuel yields

08.06.2010
Research published in the journal Genetics suggests that mutant maize have multiple independent pathways used to regulate and export sugars throughout its various organs

More than 40 years have passed since Woodstock, but psychedelics still have people seeing colors — this time, in maize, and the significance is no hallucination. That's because scientists from Pennsylvania State University have identified new genes in maize which promote carbohydrate export from leaves.

These genes are called psychedelic because of the yellow and green streaks they cause in the plant's leaves. Manipulating these genes may increase crop yields and the amount of biofuel that can be derived from each plant. This research discovery was published in the May 2010 issue of Genetics (http://www.genetics.org).

"This study shows that there is still a lot to learn about genes that control carbohydrate distribution in plants," said David Braun, Ph.D, a researcher involved in the work conducted at Penn State's Department of Biology. "By learning how these genes work, I hope we'll be able to improve plant growth and crop yield to solve some of the serious challenges concerning sustainable food and fuel production."

The movement of carbohydrates from leaves to roots, stems, flowers, and seeds is fundamental to plant growth and crop yields. Although the process has been studied for many years, relatively little is known about the genes that control it. This research shows that two previously unknown genes function together to help move carbon from leaves to other parts of the plant, ultimately resulting in the allocation of carbohydrates that are essential for growth. To make this discovery, scientists examined maize with yellow- and green-streaked leaves, a sign of mutation in genes responsible for the transport of carbohydrates within the plant. Once they identified the specific genes responsible for this coloring, they determined exactly which biological pathway they affected. Not only did the scientists find two new genes that work together in this process, but they also discovered that these genes affected a pathway different from anything previously known. This finding raises hope that by manipulating this pathway, corn or other crops could yield more grain for food or feed, more biomass for fuel, or plants better able to withstand environmental stresses, such as drought. This research was funded by the USDA Agriculture and Food Research Initiative.

"Woodstock was a trip," said Mark Johnston, Editor-in-Chief of the journal Genetics, "but the potential of this and similar research is a journey. Increasing corn yields will impact multiple generations. It would allow farmers to produce more food, feed, and fuel from the same amount of land, and as the human population increases, society will need to get the most out of each plant as possible. This work promises to contribute to a continuation of the Green Revolution."

Since 1916, Genetics (http://www.genetics.org) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. Genetics, the peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most-cited journals in genetics and heredity.

Tracey DePellegrin Connelly | EurekAlert!
Further information:
http://www.cmu.edu

Further reports about: crop yield environmental stress specific gene

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>