Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Psychedelic' maize may help increase crop and biofuel yields

08.06.2010
Research published in the journal Genetics suggests that mutant maize have multiple independent pathways used to regulate and export sugars throughout its various organs

More than 40 years have passed since Woodstock, but psychedelics still have people seeing colors — this time, in maize, and the significance is no hallucination. That's because scientists from Pennsylvania State University have identified new genes in maize which promote carbohydrate export from leaves.

These genes are called psychedelic because of the yellow and green streaks they cause in the plant's leaves. Manipulating these genes may increase crop yields and the amount of biofuel that can be derived from each plant. This research discovery was published in the May 2010 issue of Genetics (http://www.genetics.org).

"This study shows that there is still a lot to learn about genes that control carbohydrate distribution in plants," said David Braun, Ph.D, a researcher involved in the work conducted at Penn State's Department of Biology. "By learning how these genes work, I hope we'll be able to improve plant growth and crop yield to solve some of the serious challenges concerning sustainable food and fuel production."

The movement of carbohydrates from leaves to roots, stems, flowers, and seeds is fundamental to plant growth and crop yields. Although the process has been studied for many years, relatively little is known about the genes that control it. This research shows that two previously unknown genes function together to help move carbon from leaves to other parts of the plant, ultimately resulting in the allocation of carbohydrates that are essential for growth. To make this discovery, scientists examined maize with yellow- and green-streaked leaves, a sign of mutation in genes responsible for the transport of carbohydrates within the plant. Once they identified the specific genes responsible for this coloring, they determined exactly which biological pathway they affected. Not only did the scientists find two new genes that work together in this process, but they also discovered that these genes affected a pathway different from anything previously known. This finding raises hope that by manipulating this pathway, corn or other crops could yield more grain for food or feed, more biomass for fuel, or plants better able to withstand environmental stresses, such as drought. This research was funded by the USDA Agriculture and Food Research Initiative.

"Woodstock was a trip," said Mark Johnston, Editor-in-Chief of the journal Genetics, "but the potential of this and similar research is a journey. Increasing corn yields will impact multiple generations. It would allow farmers to produce more food, feed, and fuel from the same amount of land, and as the human population increases, society will need to get the most out of each plant as possible. This work promises to contribute to a continuation of the Green Revolution."

Since 1916, Genetics (http://www.genetics.org) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. Genetics, the peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most-cited journals in genetics and heredity.

Tracey DePellegrin Connelly | EurekAlert!
Further information:
http://www.cmu.edu

Further reports about: crop yield environmental stress specific gene

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>