Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Premium Vectors' for the Life Sciences: Magnetic Nanoparticles

05.03.2012
Positively charged star polymers containing a magnetic core are particularly suitable as DNA-delivery vectors.
They show extremely high gene transfer efficiency and afterwards enable the quick and simple separation of the transfected cells from the transfection pool. A research team from the University of Bayreuth reports this result in the current online edition of "Biomacromolecules".

Only five months ago a research team from the University of Bayreuth reported a discovery that was internationally acknowledged. The scientists led by Prof. Dr. Ruth Freitag (Process Biotechnology) and Prof. Dr. Axel Müller (Macromolecular Chemistry II) developed large star-shaped polymers that are promising vectors in genetic engineering. Most importantly, the new polymers were capable of introducing genes into a large variety of living cells, including non-dividing and differentiated cells, i.e. cells that up to now typically require viruses for efficient genetic modification. In chemical terms, these molecules can be described as PDMAEMA stars.

Now the Bayreuth team reports a related discovery in the current online edition of "Biomacromolecules". As the team specifies, similar PDMAEMA stars can be constructed with a magnetic core and then combine the ability for efficient transfection with the potential for easy separation of the transfected from the non-transfected cells. This research success stems from an intensive interdisciplinary cooperation of long standing. The magnetic PDMAEMA stars were produced in the Bayreuth polymer chemistry laboratories. Tests in the Biotechnology group then demonstrated that the novel agents may very well constitute 'premium vectors' for the genetic modification of cells.

Biotechnological advantages: high transfection efficiency,
quick and simple isolation of transfected cells

Like the PDMAEMA stars previously tested, the magnetic PDMAEMA stars are also capable of efficiently introducing genetic information, i.e. DNA molecules, into living cells, a process called transfection. "When we transfected cells of a cell line originating from the Chinese hamster (CHO cells), we consistently observed transfection efficiencies that largely exceed those we previously obtained using poly(ethylenimine) (PEI)", explains Prof. Dr. Ruth Freitag. Linear PEI has until now been regarded as the 'gold standard' in cell transfection and is therefore used in genetic engineering processes worldwide.

The new vectors have another advantage in addition to their unusual efficiency. The PDMAEMA stars retain their magnetic properties when they are within the cells. For this reason, the transfected cells can be separated from all other cells in a very simple manner: a standard strong magnet is sufficient to extract specifically the cells that have taken up the DNA from those that have not. This makes the magnetic PDMAEMA stars the ideal tool to extract successfully transfected cells from the general transfection pool, and thereby prepare in pure form, a genetically modified cell population, be it to introduce a new gene, compensate for a missing gene, to substitute a defect genes or to ameliorate the consequences of such aberrations.

Star-shaped giant molecules containing a magnetic core,
synthesis using modern polymer chemistry techniques

How are the magnetic PDMAEMA stars produced? Spherical nanoparticles are the starting point of this process. They belong to the class of iron oxides and have magnetic qualities. Initiator molecules are attached to the surface of such a particle, forming the starting points for the star-shaped structure. Each initiator starts the polymerisation of a long PDMAEMA chain, an 'arm'. This process (called "grafting from") makes the spherical nanoparticle the centre of a large star-shaped molecule. When it is finished, the star-shaped molecule has on average 46 of these chain-like arms. Each arm contains nearly 600 repeating molecule groups.

Patent registration

On account of the high application potential for the life sciences, the magnetic PDMAEMA stars have been registered as a patent in the name of the University of Bayreuth by the Bavarian Patent Alliance (BayPAT, the central patent and marketing agency of the Bavarian universities). The Innovation Advisory Service of Bayreuth University, in particular Dr. Andreas Kokott und Dr. Heinz-Walter Ludwigs, made a major contribution to the preparation for the patent registration.

Publication:

Alexander P. Majewski, Anja Schallon, Valérie Jérôme, Ruth Freitag, Axel H. E. Müller, and Holger Schmalz,
Dual-Responsive Magnetic Core-Shell Nanoparticles for Non-Viral Gene Delivery and Cell Separation,
in: Biomacromolecules, Publication Date (Web): Feb 1, 2012
DOI: 10.1021/bm2017756
For suitability of PDMAEMA stars in genetic therapy see also:
http://www.uni-bayreuth.de/blick-in-die-forschung/31-2011.pdf
Contact for further information:
Prof. Dr. Ruth Freitag
Department of Process Biotechnology
University of Bayreuth
95440 Bayreuth, Germany
Tel.: +49 (0)921 55-7371
Email: ruth.freitag@uni-bayreuth.de
Prof. Dr. Axel Müller
Department of Macromolecular Chemistry II
University of Bayreuth
95440 Bayreuth, Germany
Tel.: +49 (0)921 55-3399
Email: axel.mueller@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Further information:
http://www.uni-bayreuth.de

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>