Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Premium Vectors' for the Life Sciences: Magnetic Nanoparticles

05.03.2012
Positively charged star polymers containing a magnetic core are particularly suitable as DNA-delivery vectors.
They show extremely high gene transfer efficiency and afterwards enable the quick and simple separation of the transfected cells from the transfection pool. A research team from the University of Bayreuth reports this result in the current online edition of "Biomacromolecules".

Only five months ago a research team from the University of Bayreuth reported a discovery that was internationally acknowledged. The scientists led by Prof. Dr. Ruth Freitag (Process Biotechnology) and Prof. Dr. Axel Müller (Macromolecular Chemistry II) developed large star-shaped polymers that are promising vectors in genetic engineering. Most importantly, the new polymers were capable of introducing genes into a large variety of living cells, including non-dividing and differentiated cells, i.e. cells that up to now typically require viruses for efficient genetic modification. In chemical terms, these molecules can be described as PDMAEMA stars.

Now the Bayreuth team reports a related discovery in the current online edition of "Biomacromolecules". As the team specifies, similar PDMAEMA stars can be constructed with a magnetic core and then combine the ability for efficient transfection with the potential for easy separation of the transfected from the non-transfected cells. This research success stems from an intensive interdisciplinary cooperation of long standing. The magnetic PDMAEMA stars were produced in the Bayreuth polymer chemistry laboratories. Tests in the Biotechnology group then demonstrated that the novel agents may very well constitute 'premium vectors' for the genetic modification of cells.

Biotechnological advantages: high transfection efficiency,
quick and simple isolation of transfected cells

Like the PDMAEMA stars previously tested, the magnetic PDMAEMA stars are also capable of efficiently introducing genetic information, i.e. DNA molecules, into living cells, a process called transfection. "When we transfected cells of a cell line originating from the Chinese hamster (CHO cells), we consistently observed transfection efficiencies that largely exceed those we previously obtained using poly(ethylenimine) (PEI)", explains Prof. Dr. Ruth Freitag. Linear PEI has until now been regarded as the 'gold standard' in cell transfection and is therefore used in genetic engineering processes worldwide.

The new vectors have another advantage in addition to their unusual efficiency. The PDMAEMA stars retain their magnetic properties when they are within the cells. For this reason, the transfected cells can be separated from all other cells in a very simple manner: a standard strong magnet is sufficient to extract specifically the cells that have taken up the DNA from those that have not. This makes the magnetic PDMAEMA stars the ideal tool to extract successfully transfected cells from the general transfection pool, and thereby prepare in pure form, a genetically modified cell population, be it to introduce a new gene, compensate for a missing gene, to substitute a defect genes or to ameliorate the consequences of such aberrations.

Star-shaped giant molecules containing a magnetic core,
synthesis using modern polymer chemistry techniques

How are the magnetic PDMAEMA stars produced? Spherical nanoparticles are the starting point of this process. They belong to the class of iron oxides and have magnetic qualities. Initiator molecules are attached to the surface of such a particle, forming the starting points for the star-shaped structure. Each initiator starts the polymerisation of a long PDMAEMA chain, an 'arm'. This process (called "grafting from") makes the spherical nanoparticle the centre of a large star-shaped molecule. When it is finished, the star-shaped molecule has on average 46 of these chain-like arms. Each arm contains nearly 600 repeating molecule groups.

Patent registration

On account of the high application potential for the life sciences, the magnetic PDMAEMA stars have been registered as a patent in the name of the University of Bayreuth by the Bavarian Patent Alliance (BayPAT, the central patent and marketing agency of the Bavarian universities). The Innovation Advisory Service of Bayreuth University, in particular Dr. Andreas Kokott und Dr. Heinz-Walter Ludwigs, made a major contribution to the preparation for the patent registration.

Publication:

Alexander P. Majewski, Anja Schallon, Valérie Jérôme, Ruth Freitag, Axel H. E. Müller, and Holger Schmalz,
Dual-Responsive Magnetic Core-Shell Nanoparticles for Non-Viral Gene Delivery and Cell Separation,
in: Biomacromolecules, Publication Date (Web): Feb 1, 2012
DOI: 10.1021/bm2017756
For suitability of PDMAEMA stars in genetic therapy see also:
http://www.uni-bayreuth.de/blick-in-die-forschung/31-2011.pdf
Contact for further information:
Prof. Dr. Ruth Freitag
Department of Process Biotechnology
University of Bayreuth
95440 Bayreuth, Germany
Tel.: +49 (0)921 55-7371
Email: ruth.freitag@uni-bayreuth.de
Prof. Dr. Axel Müller
Department of Macromolecular Chemistry II
University of Bayreuth
95440 Bayreuth, Germany
Tel.: +49 (0)921 55-3399
Email: axel.mueller@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Further information:
http://www.uni-bayreuth.de

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>