Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Noise' tunes logic circuit made from virus genes

09.11.2011
In the world of engineering, "noise" – random fluctuations from environmental sources such as heat – is generally a bad thing.

In electronic circuits, it is unavoidable, and as circuits get smaller and smaller, noise has a greater and more detrimental effect on a circuit's performance. Now some scientists are saying: if you can't beat it, use it.

Engineers from Arizona State University in Tempe and the Space and Naval Warfare Systems Center (SPAWAR) in San Diego, Calif., are exploiting noise to control the basic element of a computer – a logic gate that can be switched back and forth between two different logic functions, such as ANDOR – using a genetically engineered system derived from virus DNA.

In a paper accepted to the AIP's journal Chaos, the team has demonstrated, theoretically, that by exploiting sources of external noise, they can make the network switch between different logic functions in a stable and reliable way.

The scientists focused on a single-gene network in a bacteriophage ë (lamda). The gene they use regulates the production of a particular protein in the virus. Normally, there are biological reactions that regulate the creation and destruction of this protein; upsetting that balance results in a protein concentration that is either too high or too low. The scientists assigned a "1" to one concentration and a "0" to the other. By manipulating the protein concentration, the team could encode the logic gate input values and obtain the desired output values.

Researchers modeled the system as two potential energy "wells" separated by a hump, corresponding to an energy barrier. In the presence of too much noise, the system never relaxes into one of the two wells, making the output unpredictable. Too little noise, on the other hand, does not provide the boost necessary for the system to reach a high enough protein concentration to overcome the energy barrier; in this case, there is also a high probability that the biological logic gate will fail to achieve its predicted computation. But an optimal amount of noise stabilizes the circuit, causing the system to jump into the "correct well" – and stay there. This proof-of-concept work offers the possibility of exploiting noise in biologic circuits instead of regarding it as a laboratory curiosity or a nuisance, the researchers say.

Article: "Logical stochastic resonance with correlated internal and external noises in a synthetic biological logic block" is accepted for publication in Chaos: An Interdisciplinary Journal of Nonlinear Science.

Authors: Anna Dari (1), Behnam Kia (2), Adi R. Bulsara (3), and William L. Ditto (3).

(1) School of Biological and Health Systems Engineering, Arizona State University, Tempe
(2) School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe

(3) Space and Naval Warfare Systems Center Pacific (SPAWAR), San Diego, Calif.

Jennifer Lauren Lee | EurekAlert!
Further information:
http://www.aip.org

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>